
How to really obfuscate
your PDF malware

Sebastian Porst - ReCon 2010
Email: sebastian.porst@zynamics.com

Twitter: @LambdaCube
1

Targeted Attacks 2008

2

Adobe Acrobat
Reader; 28.61%

Microsoft
PowerPoint;

16.87%Microsoft Excel;
19.97%

Microsoft Word;
34.55%

http://www.f-secure.com/weblog/archives/00001676.html

Targeted Attacks 2009

3

Adobe Acrobat
Reader; 48.87%

Microsoft
PowerPoint;

4.52%
Microsoft

Excel; 7.39%

Microsoft Word;
39.22%

Exploited in the wild

CVE-
2007-
5659

CVE-
2008-
2992

CVE-
2009-
0658

CVE-
2009-
0927

CVE-
2009-
1492

CVE-
2009-
3459

CVE-
2009-
4324

CVE-
2010-
0188

Four common exploit paths

5

Broken PDF Parser

Vulnerable JavaScript Engine

Vulnerable external libraries

/Launch

PDF Malware Obfuscation

6

Different tricks for different purposes

Make manual analysis more difficult

Resist automated analysis

Avoid detection by virus scanners

PDF Malware Obfuscation

7

Conflicting goals

Avoid detection
by being

wellformed

Make analysis
difficult by being

malformed

How to achieve these goals

8

Being harmless Being evil

• Avoid JavaScript

• Do not use unusual
encodings

• Do not try to break
parser-based tools

• Ideally use an 0-day

• Use heavy
obfuscation

• Try to break tools

9

Let‘s be evil

Breaking tools

11

Rule #1: Do the unexpected

This is what tools expect

• ASCII Strings

• Boring encodings like #41 instead of A

• Wellformed or only moderately malformed
PDF file structure

12

Malformed documents

• Adobe Reader tries to load malformed PDF
files

• Very, very liberal interpretation of the PDF
specification

• Parser-based analysis tools need to know
about Adobe Reader file correction

13

Malformed PDF file – Example I

14

7 0 obj

<<

/Type /Action

/S /JavaScript

/JS (app.alert('whatever');)
>>

endobj

Malformed PDF file – Example II

15

5 0 obj

<< /Length 45 >>

stream

some data

endstream

endobj

Further reading

16

Obfuscating JavaScript code

Goal of JavaScript obfuscation

18

Hide the shellcode

JavaScript obfuscation in the wild

• Screwed up formatting

• Name obfuscation

• Eval-chains

• Splitting JavaScript code

• Simple anti-emulation techniques

• callee-trick

• ...

19

Screwed up formatting

• Basically just remove all newlines

• Completely useless: jsbeautifier.org

20

Name obfuscation

• Variables or function names are renamed to
hide their meaning

• Most JavaScript obfuscators screw this up

21

Obfuscation example: Original code

22

function executePayload(payload, delay)

{

if (delay > 1000)

{

// Whatever

}

}

function heapSpray(code, repeat)

{

for (i=0;i<repeat;i++)

{

code = code + code;

}

}

Obfuscation without considering scope

23

function executePayload(hkof3ewhoife, fhpfewhpofe)

{

if (fhpfewhpofe > 1000)

{

// Whatever

}

}

function heapSpray(hoprwehjoprew, hoifwep43)

{

for (jnpfw93=0;jnpfw93<hoifwep43;jnpfw93++)

{

hoprwehjoprew = hoprwehjoprew + hoprwehjoprew;

}

}

Obfuscation with considering scope

24

function executePayload(grtertttrr, hnpfefwefee)

{

if (hnpfefwefee > 1000)

{

// Whatever

}

}

function heapSpray(grtertttrr, hnpfefwefee)

{

for (hjnprew=0;hjnprew<hnpfefwefee;hjnprew++)

{

grtertttrr = grtertttrr + grtertttrr;

}

}

Obfuscation: Going the whole way

25

function ____(____, _____)

{

if (_____ > 1000)

{

// Whatever

}

}

function _____(____, _____)

{

for (______=0; ______<_____; ______++)

{

____ = ____ + ____;

}

}

Name obfuscation: Lessons learned

• Consider name scope

– Deobfuscator needs to know scoping rules too

• Use underscores

– Drives human analysts crazy

• Also cute: Use meaningful names that have
nothing to do with the variable

– Maybe shuffle real variable names

26

Eval chains

• JavaScript code can execute JavaScript code in
strings through eval

• Often used to hide later code stages which are
decrypted on the fly

• Common way to extract argument: replace
eval with a printing function

27

Eval chains: Doing it better

• Make sure your later stages reference
variables or functions from earlier stages

• Re-use individual eval statements multiple
times to make sure eval calls can not just be
replaced

28

JavaScript splitting

• JavaScript can be split over several PDF
objects

• These scripts can be executed consecutively

• Context is preserved between scripts

• In the wild I‘ve seen splitting across 2-4
objects

29

JavaScript splitting: Doing it better

• One line of JavaScript per object

• Randomize the order of JavaScript objects

• Admittedly it takes only one script to sort and
extract the scripts from the objects

30

Anti-emulation code

• Simple checks for Adobe Reader extensions

• Multistaged JavaScript code

31

Current malware loads code from

32

Pages

Annotations

Info Dictionary

Example: Loading code from
annotations

33

y = app.doc;

y.syncAnnotScan();

var p = y["getAnnots"]({nPage: 0});

var s = p[0].subject;

eval(s);

Problems with current approaches

34

Code is
in the file

Easy to
extract

Anti-emulation code: Improved

35

Key ideas behind anti-emulation code

Find idiosyncrasies in the
Adobe JavaScript engine

Find extensions that are
difficult to emulate

Exhibit A: Idiosyncrasy

36

cypher = [7, 17, 28, 93, 4, 10, 4, 30, 7, 77, 83, 72];

cypherLength = cypher.length;

hidden = "ThisIsNotTheKeyYouAreLookingFor";

hiddenLength = hidden.toString().length;

for(i=0,j=0;i<cypherLength;i++,j++)

{

cypherChar = cypher[i];

keyChar = hidden.toString().charCodeAt(j);

cypher[i] = String.fromCharCode(cypherChar ^ keyChar);

if (j == hiddenLength - 1)

j = -1;

}

eval(cypher.join(""));

Exhibit A: Explained

37

hidden = false;

hidden = "Key";

hidden = false;

hidden = "Key";

JavaScript Standard Adobe Reader JavaScript

hidden has the value „Key“ hidden has the value „true“

Exhibit A: Explained

38

The Adobe Reader JavaScript engine
defines global variables that do not
change their type on assignment.

(I suspect this happens because they are backed by C++ code)

Exhibit B: Difficult to emulate

• Goal: Find Adobe JavaScript API functions
which are nearly impossible to emulate

• Then use effects of these functions in sneaky
ways to change malware behavior

• The Adobe Reader JavaScript documentation
is your friend

39

Exhibit B: Difficult to emulate

40

Functions to look for

Rendering engine

Forms extensions

Multimedia extensions

Exhibit B: Difficult to emulate

41

crypt = "T^_]^[T IEYYD__ FuRRKBD ";

plain = Array();

key = getPageNthWordQuads(0, 0).toString().split(",")[1];

for (i=0,j=0;i<crypt.length;i++,j++)

{

plain = plain + String.fromCharCode((crypt.charCodeAt(i) ^

key.charCodeAt(j)));

if (j >= key.length)

j = 0;

}

app.alert(plain);

)

Exhibit B: Difficult to emulate

42

Functions to avoid

Anything with
security restrictions

Exhibit C: Multi-threaded JavaScript

• Multi-threaded applications are difficult to
reverse engineer

• Problem: There are no threads in JavaScript

• Solution: setTimeOut

• Example: Cooperative multi-threading with
message-passing between objects

43

Basic idea

• Multiple server objects

• String messages are passed between servers

• Messages contain new timeout value and
code to evaluate

44

45

function Server(name)

{

...

}

s1 = new Server("S1");

s2 = new Server("S2");

s1.receive(ENCODED_MESSAGE);

46

function Server(name)

{

this.name = name;

this.receive = function(message)

{

recipient = parse_recipient(message)

delayTime = parse_delay(message)

eval_string = parse_eval_string(message)

msg_string = parse_message_string(message)

eval(eval_string);

command = "recipient.receive('" + msg_string + "')";

this.x = app.setTimeOut(command, delayTime);

}

};

How to improve this

• Use a global string object as the message
queue and manipulate the object on the fly

• Usage of non-commutative operations so that
execution order really matters

• Message broadcasting

• Add anti-emulation code to eval-ed code

47

callee-trick

• Not specific to Adobe Reader

• Frequently used by JavaScript code in other
contexts

• Function accesses its own source and uses it
as a key to decrypt code or data

• Add a single whitespace and decryption fails

48

callee-trick Example

49

function decrypt(cypher)

{

var key = arguments.callee.toString();

for (var i = 0; i < cypher.length; i++)

{

plain = key.charCodeAt(i) ^ cypher.charCodeAt(i);

}

...

}

More ideas for the future

• Combine anti-debugging, callee-trick, and
message passing

• Find more JavaScript engine idiosyncracies:
Sputnik JavaScript test suite

50

Thanks

• Didier Stevens

• Julia Wolf

• Peter Silberman

• Bruce Dang

51

52

