How to really obfuscate
your PDF malware

Sebastian Porst - ReCon 2010
Email: sebastian.porst@zynamics.com
Twitter: @LambdaCube

Targeted Attacks 2008

Microsoft Word;
34.55%

http://www.f-secure.com/weblog/archives/00001676.html>

Targeted Attacks 2009

Microsoft Word;
39.22%

Microsoft
Microsoft PowerPoint;
Excel; 7.39% 4.52%

Exploited in the wild

CVE- CVE- CVE- CVE-
2007- 2009- 2009- 2009-

O O O O O O O O

2008- 2009- 2009- 2010-
2992 0927 3459 0188

Four common exploit paths

Broken PDF Parser

Vulnerable JavaScript Engine

Vulnherable external libraries

/Launch

PDF Malware Obfuscation

Different tricks for different purposes

Make manual analysis more difficult

Resist automated analysis

Avoid detection by virus scanners

PDF Malware Obfuscation

Conflicting goals

Avoid detection VELCGEREWSE

by being difficult by being
wellformed malformed

How to achieve these goals

Being harmless
Avoid JavaScript

Do not use unusual
encodings

Do not try to break
parser-based tools

ldeally use an 0-day

Being evil

* Use heavy
obfuscation

* Try to break tools

Let‘s be evil”’

28 Breaking tools

Rule #1: Do the unexpected

This is what tools expect

* ASCII Strings
* Boring encodings like #41 instead of A

* Wellformed or only moderately malformed
PDF file structure

Malformed documents

e Adobe Reader tries to load malformed PDF
files

* Very, very liberal interpretation of the PDF
specification

e Parser-based analysis tools need to know
about Adobe Reader file correction

Malformed PDF file — Example |

7 0 obj
<<
/Type /Action
/S /JavaScript

/JS (app.alert (‘whatever') ;)
>>

endob]

Malformed PDF file — Example Il

5 0 obj
<< /Length 45 >>
stream
some data
endstream
endob]j

Further reading

OMG-WTF-PDF
[PDF Obfuscation]

Julia Wolf
PH-Neutral
May 29,2010

I Obfuscating JavaScript code

Goal of JavaScript obfuscation

Hide the shellcode

JavaScript obfuscation in the wild

Screwed up formatting

Name obfuscation

Eval-chains

Splitting JavaScript code

Simple anti-emulation techniques
callee-trick

Screwed up formatting

e Basically just remove all newlines
 Completely useless: jsbeautifier.org

Name obfuscation

e Variables or function names are renamed to
hide their meaning

* Most JavaScript obfuscators screw this up

Obfuscation example: Original code

function executePayload (payload, delay)
{
if (delay > 1000)
{
// Whatever
}
}

function heapSpray (code, repeat)
{
for (i=0;i<repeat;i++)
{
code = code + code;
}
}

Obfuscation without considering scope

function executePayload (hkof3ewhoife, fhpfewhpofe)
{

if (fhpfewhpofe > 1000)
{
// Whatever
}
}

function heapSpray (hoprwehjoprew, hoifwep43)
{
for (jnpfw93=0; Jnpfw93<hoifwep43; jnpfw93++)
{
hoprwehjoprew = hoprwehjoprew + hoprwehjoprew;

}

Obfuscation with considering scope

function executePayload(grtertttrr, hnpfefwefee)

{
if (hnpfefwefee > 1000)

{
// Whatever

}
}

function heapSpray (grtertttrr, hnpfefwefee)
{
for (hjnprew=0;hjnprew<hnpfefwefee;hjnprew++)
{
grtertttrr = grtertttrr + grtertttrr;

}

Obfuscation: Going the whole way

function (,)

{
if (> 1000)
{
// Whatever
}
}

function (,)

{
for (=0; < ; ++)
{

}
}

Name obfuscation: Lessons learned

* Consider name scope
— Deobfuscator needs to know scoping rules too

e Use underscores

— Drives human analysts crazy

e Also cute: Use meaningful names that have
nothing to do with the variable

— Maybe shuffle real variable names

Eval chains

* JavaScript code can execute JavaScript code in
strings through eval

e Often used to hide later code stages which are
decrypted on the fly

e Common way to extract argument: replace
eval with a printing function

Eval chains: Doing it better

 Make sure your later stages reference
variables or functions from earlier stages

* Re-use individual eval statements multiple
times to make sure eval calls can not just be

replaced

JavaScript splitting

JavaScript can be split over several PDF
objects

These scripts can be executed consecutively
Context is preserved between scripts

In the wild |'ve seen splitting across 2-4
objects

JavaScript splitting: Doing it better

* One line of JavaScript per object
 Randomize the order of JavaScript objects

* Admittedly it takes only one script to sort and
extract the scripts from the objects

Anti-emulation code

* Simple checks for Adobe Reader extensions
 Multistaged JavaScript code

Current malware loads code from
Pages

Annotations

Info Dictionary

Example: Loading code from
annotations

y = app.doc;
y . syncAnnotScan() ;

var p = y["getAnnots"] ({nPage: 0});

var s p[0] .subject;

eval (s) ;

Problems with current approaches

Code is Easy to
in the file extract

Anti-emulation code: Improved

Key ideas behind anti-emulation code

Find idiosyncrasies in the
Adobe JavaScript engine

Find extensions that are
difficult to emulate

Exhibit A: Idiosyncrasy

cypher = [7, 17, 28, 93, 4, 10, 4, 30, 7, 77, 83, 72];
cypherLength = cypher.length;

hidden = "ThisIsNotTheKeyYouAreLookingFor";
hiddenLength = hidden.toString() .length;

for (1i=0, j=0;i<cypherLength;i++, j++)

{
cypherChar = cypher[i];
keyChar = hidden.toString() .charCodeAt (j) ;
cypher[i] = String.fromCharCode (cypherChar # keyChar) ;

if (j == hiddenLength - 1)
j = -1;
}

eval (cypher.join("")) ;

Exhibit A: Explained

JavaScript Standard Adobe Reader JavaScript
hidden = false; hidden = false;
hidden = "Key"; hidden = "Key";

hidden has the value ,Key“ | hidden has the value ,true”

Exhibit A: Explained

The Adobe Reader JavaScript engine
defines global variables that do not
change their type on assighment.

(I suspect this happens because they are backed by C++ code)

Exhibit B: Difficult to emulate

* Goal: Find Adobe JavaScript API functions
which are nearly impossible to emulate

* Then use effects of these functions in sneaky
ways to change malware behavior

* The Adobe Reader JavaScript documentation
is your friend

Exhibit B: Difficult to emulate

Functions to look for

Rendering engine

Forms extensions

Multimedia extensions

Exhibit B: Difficult to emulate

crypt = "Tf_]A[TIEYYQ__FuRRKBD ",
plain = Array() ;
key = getPageNthWordQuads (0, O0) .toString() .split(",")[1]:

for (i=0,3J=0;i<crypt.length;i++,j++)

{
plain = plain + String.fromCharCode ((crypt.charCodeAt (i) *

key.charCodeAt (j))) ;

if (j >= key.length)
j =0;
}

app.alert(plain) ;
)

Exhibit B: Difficult to emulate

Functions to avoid

Anything with

security restrictions

Exhibit C: Multi-threaded JavaScript

Multi-threaded applications are difficult to
reverse engineer

Problem: There are no threads in JavaScript
Solution: setTimeOut

Example: Cooperative multi-threading with
message-passing between objects

Basic idea

 Multiple server objects
* String messages are passed between servers

 Messages contain new timeout value and
code to evaluate

function Server (name)

{

sl = new Server("S1");
s2 = new Server ("S2");

sl.receive (ENCODED MESSAGE) ;

function Server (name)

{

this.name = name;

this.receive = function (message)

{
recipient = parse recipient (message)
delayTime = parse delay (message)
eval string = parse eval string(message)
msg string = parse message string(message)

eval (eval string);
command = "recipient.receive('" + msg _string + "')";
this.x app.setTimeOut (command, delayTime) ;

How to improve this

Use a global string object as the message
gueue and manipulate the object on the fly

Usage of non-commutative operations so that
execution order really matters

Message broadcasting
Add anti-emulation code to eval-ed code

callee-trick

Not specific to Adobe Reader

Frequently used by JavaScript code in other
contexts

Function accesses its own source and uses it
as a key to decrypt code or data

Add a single whitespace and decryption fails

callee-trick Example

function decrypt (cypher)
{

var key = arguments.callee.toString() ;

for (var 1 = 0; i1 < cypher.length; i++)

{
plain = key.charCodeAt (i) “~ cypher.charCodeAt (i) ;

}

More ideas for the future

* Combine anti-debugging, callee-trick, and
message passing

* Find more JavaScript engine idiosyncracies:
Sputnik JavaScript test suite

Didier Stevens

Julia Wolf

Peter Silberman
Bruce Dang

Thanks

