
Let your Mach-O fly

Vincenzo Iozzo

snagg@sikurezza.org

Who am I?

• Student at Politecnico di Milano.

• Security Consultant at Secure Network

srl.

• Reverse Engineer at Zynamics GmbH.

03/08/2010

2

Goal of the talk

03/08/2010

3

In-memory execution of arbitrary binaries

on a Mac OS X machine.

Talk outline

• Mach-O file structure

• XNU binary execution

• Attack technique

• Defeat ASLR on libraries to enhance

the attack

03/08/2010

4

Talk outline

• Mach-O file structure

• XNU binary execution

• Attack technique

• Defeat ASLR on libraries to enhance

the attack

03/08/2010

5

Mach-O file

• Header structure: information on the target

architecture and options to interpret the file.

• Load commands: symbol table location,

registers state.

• Segments: define region of the virtual

memory, contain sections with code or data.

03/08/2010

6

Segment and Sections

segment

Virtual
address
0x1000

Virtual
memory size

0x1000

File Offset

0x0

File Size

0x1000

section

Virtual
Address
0x1d54

Virtual
memory size

0x275

File Offset

0xd54

03/08/2010

7

Important segments

• __PAGEZERO, if a piece of code accesses

NULL it lands here. no protection flags.

• __TEXT, holds code and read-only data. RX

protection.

• __DATA, holds data. RW protection.

• __LINKEDIT, holds information for the

dynamic linker including symbol and string

tables. RW protection.

03/08/2010

8

Mach-O representation

03/08/2010

9

Talk outline

• Mach-O file structure

• XNU binary execution

• Attack technique

• Defeat ASLR on libraries to enhance

the attack

03/08/2010

10

Binary execution

• Conducted by the kernel and the

dynamic linker.

• The kernel, when finishes his part,

jumps to the dynamic linker entry point.

• The dynamic linker is not randomized.

03/08/2010

11

Execution steps

Kernel

• Maps the dynamic linker

in the process address

space.

• Parses the header

structure and loads all

segments.

• Creates a new stack.

Dynamic linker

• Retrieves base address

of the binary.

• Resolves symbols.

• Resolves library

dependencies.

• Jumps to the binary entry

point.

03/08/2010

12

Stack

• Mach-O file base address.

• Command line arguments.

• Environment variables.

• Execution path.

• All padded.

03/08/2010

13

Stack representation

03/08/2010

14

Talk outline

• Mach-O file structure

• XNU binary execution

• Attack technique

• Defeat ASLR on libraries to enhance

the attack

03/08/2010

15

Proposed attack

• Userland-exec attack.

• Encapsulate a shellcode, aka auto-

loader, and a crafted stack in the

injected binary.

• Execute the auto-loader in the address

space of the attacked process.

03/08/2010

16

WWW

• Who: an attacker with a remote code

execution in his pocket.

• Where: the attack is two-staged. First

run a shellcode to receive the binary,

then run the auto-loader contained in

the binary.

• Why: later in this talk.

03/08/2010

17

What kind of binaries?

Any Mach-O file, from ls to Safari

03/08/2010

18

A nice picture

03/08/2010

19

Infected binary

• We need to find a place to store the

auto-loader and the crafted stack.

• __PAGEZERO infection technique.

• Cavity infector technique.

03/08/2010

20

__PAGEZERO INFECTION

• Change __PAGEZERO protection flags

with a custom value.

• Store the crafted stack and the auto-

loader code at the end of the binary.

• Point __PAGEZERO to the crafted

stack.

• Overwrite the first bytes of the file with

the auto-loader address.

03/08/2010

21

Binary layout

03/08/2010

22

Auto-loader

• Impersonates the kernel.

• Un-maps the old binary.

• Maps the new one.

03/08/2010

23

Auto-loader description

• Parses the binary.

• Reads the virtual addresses of the

injected binary segments.

• Unloads the attacked binary segments

pointed by the virtual addresses.

• Loads the injected binary segments.

03/08/2010

24

Auto-loader description(2)

• Maps the crafted stack referenced by

__PAGEZERO.

• Cleans registers.

• Cleans some libSystem variables.

• Jumps to dynamic linker entry point.

03/08/2010

25

We do like pictures, don’t we?

03/08/2010

26

TEXT DATA LINKEDIT SEGMENT

-N

TEXT DATA LINKEDIT SEGMENT-N

Victim’s process address space

libSystem variables

• _malloc_def_zone_state

• _NXArgv_pointer

• _malloc_num_zones

• __keymgr_global

03/08/2010

27

Why are those variables

important?

• They are used in the initialization of

malloc.

• Two of them are used for command line

arguments parsing.

• Not cleaning them will result in a crash.

03/08/2010

28

Hunts the variables

• Mac OS X Leopard has ASLR for

libraries.

• Those variables are not exported.

• Cannot use dlopen()/dlsym() combo.

03/08/2010

29

Talk outline

• Mach-O file structure

• XNU binary execution

• Attack technique

• Defeat ASLR on libraries to enhance

the attack

03/08/2010

30

Defeat ASLR

• Retrieve libSystem in-memory base

address.

• Read symbols from the libSystem

binary.

• Adjust symbols to the new address.

03/08/2010

31

How ASLR works in Leopard

• Only libraries are randomized.

• The randomization is performed

whenever the system or the libraries are

updated.

• Library segments addresses are saved

in dyld_shared_cache_arch.map.

03/08/2010

32

Retrieve libSystem address

• Parse

dyld_shared_cache

_i386.map and

search for libSystem

entry.

• Adopt functions

exported by the

dynamic linker and

perform the whole

task in-memory.

03/08/2010

33

Dyld functions

• _dyld_image_count() used to retrieve the

number of linked libraries of a process.

• _dyld_get_image_header() used to retrieve

the base address of each library.

• _dyld_get_image_name() used to retrieve

the name of a given library.

03/08/2010

34

Find ‘em

• Parse dyld load commands.

• Retrieve __LINKEDIT address.

• Iterate dyld symbol table and search for

the functions name in __LINKEDIT.

03/08/2010

35

Back to libSystem

• Non-exported symbols are taken out

from the symbol table when loaded.

• Open libSystem binary, find the

variables in the symbol table.

• Adjust variables to the base address of

the in-memory __DATA segment.

03/08/2010

36

Put pieces together

• Iterate the header structure of libSystem

in-memory and find the __DATA base

address.

– __DATA base address 0x2000

– Symbol at 0x2054

– In-memory __DATA base address 0x4000

– Symbol in-memory at 0x4054

03/08/2010

37

Results

• Run a binary into an arbitrary machine.

• No traces on the hard-disk.

• No execve(), the kernel doesn’t know

about us.

• It works with every binary.

• It is possible to write payloads in a high

level language.

03/08/2010

38

Demo description

• Run a simple piece of code which acts

like a shellcode and retrieve the binary.

• Execute the attack with nmap and

Safari.

• Show network dump.

• Show memory layout before and after

the attack.

03/08/2010

39

DEMO

03/08/2010

40

Future developments

• Employ encryption to avoid NIDS

detection.

• Using cavity infector technique.

• Port the code to iPhone to evade code

signing protection (Catch you at BH

Europe).

03/08/2010

41

Thanks, questions?

03/08/2010

42

