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Who am |?

" Student at Politecnico di Milano.

"« Security Consultant at Secure Network
= Srl.

. * Reverse Engineer at Zynamics GmbH.
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Goal of the talk

*In-memory execution of arbitrary binaries
° on aMac OS X machine.

Black Hat Briefings



03/08/2010

Talk outline

"« Mach-O file structure

“» XNU binary execution
= Attack technique

« * Defeat ASLR on libraries to enhance
the attack
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Mach-O file

Header structure: information on the target
architecture and options to interpret the file.

Load commands: symbol table location,
registers state.

Segments: define region of the virtual
memory, contain sections with code or data.
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Segment and Sections

Virtual Virtual
address Address
0x1000 0Ox1d54

Virtual Virtual

memory size memory size
0x1000 0x275

File Offset File Offset
0x0 0xd54

File Size
0x1000
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Important segments

« PAGEZERO, Iif a piece of code accesses
= NULL it lands here. no protection flags.

~ _ TEXT, holds code and read-only data. RX
. protection.

=« DATA, holds data. RW protection.

«  LINKEDIT, holds information for the
dynamic linker including symbol and string
tables. RW protection.
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Mach-O representation

Heador

Data

Saction 1 data

Saction 2 data

Seclion 3 data

Section 4 data

Section 5 data

Sectlon n data

Black Hat Briefings



03/08/2010

Talk outline

"« Mach-O file structure

“« XNU binary execution
" Attack technique

a-* Defeat ASLR on libraries to enhance
the attack

Black Hat Briefings



03/08/2010

Binary execution

“» Conducted by the kernel and the
= dynamic linker.

= The kernel, when finishes his part,
® Jumps to the dynamic linker entry point.

_* The dynamic linker is not randomized.
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Execution steps

Dynamic linker

s Maps the dynamic linker * Retrieves base address
" In the process address of the binary.

= Space. Resolves symbols.
L Parses the header Resolves library
structure and loads alll dependencies.

} segments. Jumps to the binary entry
» Creates a new stack. point.
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Stack

"« Mach-O file base address.

“» Command line arguments.
" Environment variables.

= * Execution path.
=« All padded.
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Proposed attack

" Userland-exec attack.

"+ Encapsulate a shellcode, aka auto-
= l|oader, and a crafted stack in the
* Injected binary.
_+ Execute the auto-loader in the address
space of the attacked process.
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WWW

Who: an attacker with a remote code
execution in his pocket.

Where: the attack Is two-staged. First

run a shellcode to receive the binary,
then run the auto-loader contained In
the binary.

Why: later in this talk.
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What kind of binaries?

Any Mach-O file, from Is to Safari
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A nice picture

MachoFly loader

—— (1) Exploit code + MachoFly payload —> ready

- (2)MachoFlv auto-loader + arbitrarv Mach-o =

«<—— (3) arbitrary Mach-o response/output —
- PomSEioIPHt S~

h
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Infected binary

" We need to find a place to store the
auto-loader and the crafted stack.

= PAGEZERO Infection technique.
"« Cavity infector technique.
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=  PAGEZERO INFECTION

Change  PAGEZERO protection flags
with a custom value.

«¢ Store the crafted stack and the auto-
loader code at the end of the binary.

Point  PAGEZERO to the crafted
stack.

Overwrite the first bytes of the file with
the auto-loader address.
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Binary layout

INFECTED _ PAGEZERDO

load commands and segments

sections and binary data
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Auto-loader

“» Impersonates the kernel.
|
“» Un-maps the old binary.
= Maps the new one.
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Auto-loader description

“» Parses the binary.

" » Reads the virtual addresses of the
= Injected binary segments.

" Unloads the attacked binary segments
pointed by the virtual addresses.

*« |oads the Injected binary segments.
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Auto-loader description(2)

. Maps the crafted stack referenced by
__ PAGEZERO.

= Cleans registers.
" Cleans some libSystem variab
« Jumps to dynamic linker entry
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libSystem variables

« malloc_def zone state
 NXArgv_pointer
= malloc_num_zones

= * _keymgr global
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Why are those variables
Important?

" They are used in the initialization of
=  malloc.

= [Two of them are used for command line

® arguments parsing.
_+ Not cleaning them will result in a crash.
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Hunts the variables

" Mac OS X Leopard has ASLR for
= libraries.

= Those variables are not exported.
"« Cannot use dlopen()/disym() combo.
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Defeat ASLR

“s Retrieve libSystem in-memory base
= address.

« Read symbols from the libSystem
" binary.
_* Adjust symbols to the new address.
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= How ASLR works in Leopard

| . . .
* Only libraries are randomized.
|

“» The randomization is performed
= Whenever the system or the libraries are
" updated.

_+ Library segments addresses are saved
In dyld_shared cache arch.map.
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Retrieve liIbSystem address

Parse « Adopt functions
dyld _shared cache exported by the
_1386.map and dynamic linker and
search for libSystem perform the whole
entry. task in-memory.
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Dyld functions

 dyld image count() used to retrieve the
= number of linked libraries of a process.

= _dyld get image header() used to retrieve
_ the base address of each library.

=+« dyld get image name() used to retrieve
= the name of a given library.
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Find ‘em

" Parse dyld load commands.
]
"+ Retrieve _ LINKEDIT address.

= |terate dyld symbol table and search for
" the functions name in __ LINKEDIT.

Black Hat Briefings



03/08/2010

Back to libSystem

. Non-exported symbols are taken out
from the symbol table when loaded.

= Open libSystem binary, find the
* variables in the symbol table.

_+ Adjust variables to the base address of
the in-memory  DATA segment.
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Put pieces together

" Iterate the header structure of libSystem
* in-memory and find the _ DATA base
address.

= — DATA base address 0x2000
— Symbol at 0x2054
— In-memory _ DATA base address 0x4000
— Symbol in-memory at 0x4054
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Results

Run a binary into an arbitrary machine.
No traces on the hard-disk.

No execve(), the kernel doesn’'t know
about us.

It works with every binary.

It IS possible to write payloads in a high
level language.
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Demo description

" Runa simple piece of code which acts
like a shellcode and retrieve the binary.

= EXxecute the attack with nmap and
= Safarl.

_+ Show network dump.

"« Show memory layout before and after
the attack.
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Future developments

. Employ encryption to avoid NIDS
= detection.

= Using cavity infector technigue.

"o Port the code to iPhone to evade code
signing protection ( Catch you at BH
Europe).
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Thanks, questions?
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