Let your Mach-O fly

Vincenzo lozzo
shagg@sikurezza.org

Black Hat Briefings



03/08/2010

Who am |?

" Student at Politecnico di Milano.

"« Security Consultant at Secure Network
= Srl.

. * Reverse Engineer at Zynamics GmbH.

Black Hat Briefings



03/08/2010

Goal of the talk

*In-memory execution of arbitrary binaries
° on aMac OS X machine.

Black Hat Briefings



03/08/2010

Talk outline

"« Mach-O file structure

“» XNU binary execution
= Attack technique

« * Defeat ASLR on libraries to enhance
the attack

Black Hat Briefings



03/08/2010

Talk outline

"« Mach-O file structure

"-» XNU binary execution
" Attack technique

a-* Defeat ASLR on libraries to enhance
the attack

Black Hat Briefings



03/08/2010

Mach-O file

Header structure: information on the target
architecture and options to interpret the file.

Load commands: symbol table location,
registers state.

Segments: define region of the virtual
memory, contain sections with code or data.

Black Hat Briefings



03/08/2010

Segment and Sections

Virtual Virtual
address Address
0x1000 0Ox1d54

Virtual Virtual

memory size memory size
0x1000 0x275

File Offset File Offset
0x0 0xd54

File Size
0x1000

Black Hat Briefings



03/08/2010

Important segments

« PAGEZERO, Iif a piece of code accesses
= NULL it lands here. no protection flags.

~ _ TEXT, holds code and read-only data. RX
. protection.

=« DATA, holds data. RW protection.

«  LINKEDIT, holds information for the
dynamic linker including symbol and string
tables. RW protection.

Black Hat Briefings



03/08/2010

Mach-O representation

Heador

Data

Saction 1 data

Saction 2 data

Seclion 3 data

Section 4 data

Section 5 data

Sectlon n data

Black Hat Briefings



03/08/2010

Talk outline

"« Mach-O file structure

“« XNU binary execution
" Attack technique

a-* Defeat ASLR on libraries to enhance
the attack

Black Hat Briefings



03/08/2010

Binary execution

“» Conducted by the kernel and the
= dynamic linker.

= The kernel, when finishes his part,
® Jumps to the dynamic linker entry point.

_* The dynamic linker is not randomized.

Black Hat Briefings



03/08/2010

Execution steps

Dynamic linker

s Maps the dynamic linker * Retrieves base address
" In the process address of the binary.

= Space. Resolves symbols.
L Parses the header Resolves library
structure and loads alll dependencies.

} segments. Jumps to the binary entry
» Creates a new stack. point.

Black Hat Briefings



03/08/2010

Stack

"« Mach-O file base address.

“» Command line arguments.
" Environment variables.

= * Execution path.
=« All padded.

Black Hat Briefings



03/08/2010

Black Hat Briefings



03/08/2010

Talk outline

"« Mach-O file structure

"-» XNU binary execution
= Attack technique

a-* Defeat ASLR on libraries to enhance
the attack

Black Hat Briefings



03/08/2010

Proposed attack

" Userland-exec attack.

"+ Encapsulate a shellcode, aka auto-
= l|oader, and a crafted stack in the
* Injected binary.
_+ Execute the auto-loader in the address
space of the attacked process.

Black Hat Briefings



03/08/2010

WWW

Who: an attacker with a remote code
execution in his pocket.

Where: the attack Is two-staged. First

run a shellcode to receive the binary,
then run the auto-loader contained In
the binary.

Why: later in this talk.

Black Hat Briefings



03/08/2010

What kind of binaries?

Any Mach-O file, from Is to Safari

Black Hat Briefings



03/08/2010

A nice picture

MachoFly loader

—— (1) Exploit code + MachoFly payload —> ready

- (2)MachoFlv auto-loader + arbitrarv Mach-o =

«<—— (3) arbitrary Mach-o response/output —
- PomSEioIPHt S~

h

Black Hat Briefings



03/08/2010

Infected binary

" We need to find a place to store the
auto-loader and the crafted stack.

= PAGEZERO Infection technique.
"« Cavity infector technique.

Black Hat Briefings



03/08/2010

=  PAGEZERO INFECTION

Change  PAGEZERO protection flags
with a custom value.

«¢ Store the crafted stack and the auto-
loader code at the end of the binary.

Point  PAGEZERO to the crafted
stack.

Overwrite the first bytes of the file with
the auto-loader address.

Black Hat Briefings




03/08/2010

Binary layout

INFECTED _ PAGEZERDO

load commands and segments

sections and binary data




03/08/2010

Auto-loader

“» Impersonates the kernel.
|
“» Un-maps the old binary.
= Maps the new one.

Black Hat Briefings



03/08/2010

Auto-loader description

“» Parses the binary.

" » Reads the virtual addresses of the
= Injected binary segments.

" Unloads the attacked binary segments
pointed by the virtual addresses.

*« |oads the Injected binary segments.

Black Hat Briefings



03/08/2010

Auto-loader description(2)

. Maps the crafted stack referenced by
__ PAGEZERO.

= Cleans registers.
" Cleans some libSystem variab
« Jumps to dynamic linker entry

Black Hat Briefings



03/08/2010

Black Hat Briefings



03/08/2010

libSystem variables

« malloc_def zone state
 NXArgv_pointer
= malloc_num_zones

= * _keymgr global

Black Hat Briefings



03/08/2010

Why are those variables
Important?

" They are used in the initialization of
=  malloc.

= [Two of them are used for command line

® arguments parsing.
_+ Not cleaning them will result in a crash.

Black Hat Briefings



03/08/2010

Hunts the variables

" Mac OS X Leopard has ASLR for
= libraries.

= Those variables are not exported.
"« Cannot use dlopen()/disym() combo.

Black Hat Briefings



03/08/2010

Talk outline

"« Mach-O file structure

"-» XNU binary execution
" Attack technique

=« * Defeat ASLR on libraries to enhance
the attack

Black Hat Briefings



03/08/2010

Defeat ASLR

“s Retrieve libSystem in-memory base
= address.

« Read symbols from the libSystem
" binary.
_* Adjust symbols to the new address.

Black Hat Briefings



03/08/2010

= How ASLR works in Leopard

| . . .
* Only libraries are randomized.
|

“» The randomization is performed
= Whenever the system or the libraries are
" updated.

_+ Library segments addresses are saved
In dyld_shared cache arch.map.

Black Hat Briefings



03/08/2010

Retrieve liIbSystem address

Parse « Adopt functions
dyld _shared cache exported by the
_1386.map and dynamic linker and
search for libSystem perform the whole
entry. task in-memory.

Black Hat Briefings



03/08/2010

Dyld functions

 dyld image count() used to retrieve the
= number of linked libraries of a process.

= _dyld get image header() used to retrieve
_ the base address of each library.

=+« dyld get image name() used to retrieve
= the name of a given library.

Black Hat Briefings



03/08/2010

Find ‘em

" Parse dyld load commands.
]
"+ Retrieve _ LINKEDIT address.

= |terate dyld symbol table and search for
" the functions name in __ LINKEDIT.

Black Hat Briefings



03/08/2010

Back to libSystem

. Non-exported symbols are taken out
from the symbol table when loaded.

= Open libSystem binary, find the
* variables in the symbol table.

_+ Adjust variables to the base address of
the in-memory  DATA segment.

Black Hat Briefings



03/08/2010

Put pieces together

" Iterate the header structure of libSystem
* in-memory and find the _ DATA base
address.

= — DATA base address 0x2000
— Symbol at 0x2054
— In-memory _ DATA base address 0x4000
— Symbol in-memory at 0x4054

Black Hat Briefings



03/08/2010

Results

Run a binary into an arbitrary machine.
No traces on the hard-disk.

No execve(), the kernel doesn’'t know
about us.

It works with every binary.

It IS possible to write payloads in a high
level language.

Black Hat Briefings



03/08/2010

Demo description

" Runa simple piece of code which acts
like a shellcode and retrieve the binary.

= EXxecute the attack with nmap and
= Safarl.

_+ Show network dump.

"« Show memory layout before and after
the attack.

Black Hat Briefings



03/08/2010

... Black Hat Briefings



03/08/2010

Future developments

. Employ encryption to avoid NIDS
= detection.

= Using cavity infector technigue.

"o Port the code to iPhone to evade code
signing protection ( Catch you at BH
Europe).

Black Hat Briefings



03/08/2010

Thanks, questions?

Black Hat Briefings



