
Everybody be cool, this is a roppery!

Vincenzo Iozzo (vincenzo.iozzo@zynamics.com) zynamics GmbH
Tim Kornau (tim.kornau@zynamics.com) zynamics GmbH

Ralf-Philipp Weinmann (ralf-philipp.weinmann@uni.lu) Université du Luxembourg
BlackHat Vegas 2010

mailto:vincenzo.iozzo@zynamics.com
mailto:tim.kornau@zynamics.com
mailto:ralf-philipp.weinmann@uni.lu
mailto:ralf-philipp.weinmann@uni.lu
mailto:ralf-philipp.weinmann@uni.lu

Overview

1. Introduction
2. Gentle overview
3. Finding gadgets
4. Compile gadgets
5. Some fancy demos
6. Further work

Introduction

Exploitation with non-
executable pages is not much

fun

But we have funny ideas

Exploitation with non-
executable pages is not much
fun.. Unless you use “return-

oriented programming”

Gentle introduction

But life is hard

Code signing

Sandboxing

We were lucky!
ROP

Code Signing

Used to make sure that only signed
(Apple verified) binaries can be executed

• If a page has write permissions it can’t
have executable permissions
• No executable pages on the heap
• Only signed pages can be executed

ROP

Instructions

return sequence

Instructions

return sequence

Instructions

return sequence

Instructions

return sequence

Instruction sequences
within the attacked binary

Variables for the gadget

Address of the next gadget

Variables for the gadget

Address of the next gadget

Variables for the gadget

Address of the next gadget

Variables for the gadget

Address of the next gadget

Attacker controlled
memory

ROP - Workflow

1. Find the gadgets

2. Chain them to form a payload

3. Test the payload on your target

Finding Gadgets Overview

1. Goal definition
2. Motivation
3. Strategy
4. Algorithms
5. Results
6. Further improvement

Goal definition

Build an algorithm which is
capable of locating gadgets

within a given binary
automatically without major

side effects.

Motivation I

Little spirits need access to a wide range of devices.
Because what is a device without a spirit?

Motivation II

We want to be able to execute our code:

• in the presents of non-executable protection (AKA
NX bit)

• when code signing of binaries is enabled.

• but we do not aim at ASLR.

Strategy I

• Build a program from parts of another program
• These parts are named gadgets
• A gadget is a sequence of (useable) instructions
• Gadget combination must be possible

• end in a “free-branch”
• Gadgets must provide a useful operation

• for example A + B

Strategy II

• The subset of useful gadgets must be locatable in
the set of all gadgets
• Only the “simplest” gadget for an operation
should be used
• Side effects of gadgets must be near to zero to
avoid destroying results of previous executed code
sequences.
• Use the REIL meta language to be platform
independent.

Strategy III

A small introduction to the REIL meta language
• small RISC instruction set (17 instructions)

• Arithmetic instructions (ADD, SUB, MUL, DIV, MOD, BSH)
• Bitwise instructions (AND, OR, XOR)
• Logical instructions (BISZ, JCC)
• Data transfer instructions (LDM, STM, STR)
• Other instructions (NOP, UNDEF, UNKN)

• register machine
• unlimited number of temp registers
• side effect free
• no exceptions, floating point, 64Bit, ..

Algorithms

• Stage I → Collect data from the binary

• Stage II → Merge the collected data

• Stage III → Locate useful gadgets in merged data

Algorithms stage I (I)

Goal of the stage I algorithms:
• Collect data from the binary

1. Extract expression trees from native
instructions

2. Extract path information

+

R0 15

A

B
D

C

E

Algorithms stage I (II)

Details of the stage I algorithms:
1. Expression tree extraction

• Handlers for each possible REIL instruction
1. Most of the handlers are simple transformations
2. STM and JCC need to be treated specially

2. Path extraction
• Path is extracted in reverse control flow order

+
* *

BISZ
OP

COND
OP

COND

Algorithms stage II (I)

Goal of the stage II algorithms:
• Merge the collected data from stage I

1. Combine the expression trees for single
native instructions along a path

2. Determine jump conditions on the path
3. Simplify the result

Algorithms stage II (II)

Details of the stage II algorithms:
• Combine the expression trees for single native
instructions along a path

1. 0x00000001 ADD R0, R1, R2
2. 0x00000002 STR R0, R4
3. 0x00000003 LDMFD SP! {R4,LR}
4. 0x00000004 BX LR

Algorithms stage II (III)

Details of the stage II algorithms:
• Determine jump conditions on the path:

• Simplify the result:

1. 0x00000001 SOME INSTRUCTION
2. 0x00000002 BEQ 0xADDRESS
3. 0x00000003 SOME INSTRUCTION
4. 0x00000004 SOME INSTRUCTION

Z FLAG MUST BE FALSE

Generate condition tree

R0 = ((((((R2+4)+4)+4)+4) OR 0) AND 0xFFFFFFFF)
R0 = R2+16

Algorithms stage III (I)

Goal of the stage III algorithms:
• Search for useful gadgets in the merged data

 Use a tree match handler for each
operation.

• Select the simplest gadget for each operation
 Use a complexity value to determine the

gadget which is least complex. (side-
effects)

Algorithms stage III (II)

Details of the stage III algorithms:
• Search for useful gadgets in the merged data

Trees of a gadget candidate
are compared to the tree of a
specific operation.
Can you spot the match ?

Algorithms stage III (III)

Details of the stage III algorithms:
• Select the simplest gadget for each operation

There are in most cases
more instruction
sequences which
provide a specific
operation. The overall
complexity of all trees
is used to determine
which gadget is the
simplest.

Results of gadget finding

• Algorithms for automatic return-oriented
programming gadget search are possible.
• The described algorithms automatically find the
necessary parts to build the return-oriented
program.
• Searching for gadgets is not only platform but also
very compiler dependent.

So what is next

After automatic gadget extraction
we need a simple and effective way

to combine them.

Chaining gadgets

Chaining gadgets

 … by hand is like playing Tetris
 With very ugly blocks
 Each gadget set defines custom ISA
 We have better scores that at...

Chaining gadgets

Hence we have decided to
bring in some help...

Chaining gadgets

The Wolf

 A ROP compiler for gadget
sets with side-effects
 Very basic language
 Allows for easy ROPperies on
ARM devices

Living with side-effects

 “allowread”: specifies readable memory
ranges
 “allowcorrupt”: expendable memory
ranges
 [corruption may occur here]
 protect: registers must stay invariant
 [SP and PC implicitly guarded]

Statements

 (multi-)assignment
 Conditional goto statement
 Call statement (calling lib functions)
 Data definitions
 Labels for data/code

Multi-assignment

Example from PWN2OWN payload:

(r0, r1, r2) <<_| (mem[sockloc], sin, SIZE_SIN)

assignment operator

targets memory read

data reference

constant

Loops

label(clear_loop)

r1 = 256

(mem[r0], r2, r1) <<_| (0, (3*r1) & 255, r1-1)

r0 = r0+4

gotoifnz(r1, clear_loop)

RHS may contain arithmetic-logical
calculations:

{+,-,*,/, %, ^, |, &, <<, >>}

define label for
conditional jump

Hired help: STP

 Mr. Wolf is a high-level problem solver:
he likes to delegate
 Menial work: let someone else do it
 In this case STP
 [Simple Theorem Prover]

What is STP?

 Constraint solver for problems involving bit-
vectors and arrays
 Open-source, written by Vijay Ganesh
 Used for model-checking, theorem proving,
EXE, etc.
 Gives Boolean answer whether formula is
satisfiable & assignment if it is

STP formulae

 x0 : BITVECTOR(4);

 ...

 x9 : BITVECTOR(4);

 ASSERT (BVPLUS(4,BVMULT(4,x0, 0hex6), 0hex0, 0hex0,

 BVMULT(4,x3, 0hex7), BVMULT(4,x4, 0hex4),

 BVMULT(4,x5, 0hex6), BVMULT(4,x6, 0hex4),

 0hex0, 0hex0, BVMULT(4,x9, 0hex8),0hex0) = 0hex7);

Just a bunch of assertions in QF_ABV

Simple example:

High-level algorithm

1. Find all gadgets assigning to targets
2. Verify constraints for each

(protect/memread/memcorrupt)
3. Find all gadgets for expressions on RHS
4. Chain expression gadgets
5. Connect LHS and RHS

For multi-assignments:

Notes on chaining algorithm

 Chaining for arithmetic/logical expressions
may use registers/memory locations for
temporary results
 Multi-assignments give us freedom
 Algorithm sometimes may fail because
constraints cannot be satisfied [insufficient
gadgets]

K got the payload, now?

You could test it on a jailbroken phone

• Does not match reality!
• No code signing for instance
• Still an option if exploit reliability is not
your primary concern

K got the payload, now?

You could test it on a developer phone

• Have a small application to reproduce a
“ROP scenario”
• Depending on the application you’re
targeting the sandbox policy is different
• Still closer to reality

Simple plan

• Allocate a buffer on the heap
• Fill the buffer with the shellcode
• Point the stack pointer to the beginning
of the attacker controlled memory
• Execute the payload
• Restore

Future work

• Port to other platforms (eg: x86)
• Abstract language to describe gadgets
• Try to avoid “un-decidable” constraints
• Make it more flexible to help when
ASLR is in place

Thanks for your time

Questions?

