
Using SABRE BinDiff v1.6 for Malware analysis

With more and more malware surfacing every week, and the trend towards malware
“families”, AV analysts are faced with a flood of code to analyze and disassemble. The
pieces of malware keep getting larger and more complex. Many include SMTP servers and
other sophisticated functionality. The various members of the SoBig family were of the size
of small applications and shared a significant amount of code. Almost all worms or virii
spawn a number of variants and mutations very quickly. This situation is aggravated by some
malware being spread in source format for easy adaption to the needs of the attacker. In this
situation, the authors of malware try to exploit the asymmetry in the workload between
changing/recompiling source and analyzing/disassembling the compiled executable. Using
SABRE BinDiff v1.6, the workload involved in analyzing multiple variants of the same piece
of malware can be drastically reduced.

Function names and comments that were created during the analysis of one variant can be
ported to other variants quickly and easily. For the purposes of this paper, we will utilize two
IDA Pro databases – BagleX.idb, which is an untouched disassembly of Bagle/X, and
BagleW.idb, which is a heavily commented disassembly of Bagle/W.

The disassembly of Bagle/W contains different sort of comments – repeatable comments on
many functions, extra comment lines before/after instructions, and per-instruction comments.
All functions have meaningful names.

The disassembly of Bagle/X is an untouched IDA disassembly. It thus contains no comments
except those created by IDA, no meaningful names, and no anterior/posterior comment lines.
In the following few pages, this paper will show in a step-by-step manner how SABRE
BinDiff v1.6 can be used to re-use the information gained from Bagle.W for the disassembly
of Bagle/X.

Illustration 1 The commented disassembly of Bagle/W

For this, the uncommented disassembly of Bagle/X needs to be open in IDA, and the
disassembly of Bagle/W must not be opened by any other IDA instance. Hitting CTRL-5
pops up the SABRE BinDiff screen. We click on the “Configuration”-Button and are faced
with the screen shown in Illustration 2. The “Temp Directory” has to point to an intermediate
directory in which data needed for the porting of comments can be stored. The configuration
shown below is the default configuration – the only changes that need to be done is checking
the “Function Names” and “Comments” checkboxes in the “Port” group.

After clicking “OK”, the “Diff
Database against” button is clicked,
and the file “BagleW.idb” is
selected. The program will now
process the two disassemblies,
recognizing unchanged and slightly
changed code pieces.

Once the processing is finished,
three screens will appear in your
IDA Pro Window: “Unmatched:
Current IDB”, “Unmatched: Other
IDB” and the screen that is of
primary interest to us: “Matched
Functions”. The screen consists of
five columns: One that indicates
whether the function in that row
changed between the two
disassemblies, and two columns
indicating the address and name of
the function in the two
disassemblies.

In the present example, the functions
with meaningful names can be seen
on the right, whereas their
equivalents without meaningful
names can be seen on the left (see
also Illustration 3). Out of the 236
functions in the Bagle/X sample, 223
are identical to functions in the
disassembly of Bagle/W, and their
names can be easily ported.

Illustration 2 The SABRE BinDiff v1.6 Configuration Screen

A right-click on any function will pop up a context-sensitive menu. In order to port the
comments and names from the Bagle/W disassembly, the first item on that menu (“Port”) has
to be selected. A warning will pop up asking whether we truly want to overwrite the names in
the current disassembly with those from the Bagle/W database, and after answering “Yes”,
the program will spend some time processing and porting the comments from the other
disassembly. After the processing is done, we will have almost all the comments and names
from the Bagle/W disassembly already applied in the Bagle/X disassembly:

The entire process took less than 5 minutes. All there is left to do now is examining and
documenting the remaining 12 functions in the current disassembly that were not
automatically mapped.

Illustration 3 The "Matched Functions" Window

Illustration 4 The database after names and comments were ported in

