
Graph-based comparison of Executable Objects

Thomas Dullien, Ruhr-Universitaet Bochum
Rolf Rolles, University of Technology in Florida
{thomas.dullien, rolf.rolles}@sabre-security.com

Abstract

A method to construct an optimal isomorphism between
the sets of instructions, sets of basic blocks and sets of
functions in two differing but similar executables is pre-
sented. This isomorphism can be used for porting re-
covered information between different disassemblies, re-
cover changes made by security updates and detect code
theft.

The most interesting applications in the realm of se-
curity are in malware analysis where the analysis of a
family of trojans or viruses can be reduced to analyzing
the differences between the variants, and in recovering
the details of fixed vulnerabilities when the vendor of the
security patch refuses to disclose details.

A framework implementing the described methods is
presented, along with empirical data about it’s perfor-
mance when analyzing multiple variants of the same
malware and recovering vulnerability details from secu-
rity updates.

1 Introduction

While programs that compare different versions of the
same source code file have been in widespread use for
many years, very little focus has so far been placed on the
importance of detecting and analyzing changes between
two versions of the same executable.

Without an automated way of detecting source code
changes in the object code and porting analysis results
between disassemblies of related executables, the party
prompted with analyzing the changes is at a disadvan-
tage: Each ”round” of reverse engineering requires a
massive duplication of work done in prior ”rounds” of
analysis, while very little work is required to change the
source code and recompile.

Both malware authors of high-level-language virus
families such as SoBig and software vendors try to ex-
ploit this asymmetry: Both want to buy time, one side

to allow customers to patch software before attackers
can build automated attack tools, the other side to allow
their malware to propagate before detection signatures
are available.

This paper presents a novel approach for solving this:
Given two executablesA and A′, a bijective mapping
between the functions inA andA′ is constructed by it-
eratively improving a partial graph isomorphism on the
call-graphs of the executables. Once that mapping is gen-
erated, a bijective mapping between the basic blocks of
a pair of functionsf, f ′ is constructed by using the same
iterative improvement of a partial graph isomorphism on
the flow-graph of the functions. Finally, given a pair of
two corresponding basic blocksβ, β′ an isomorphism of
the instructions is generated by treating the sequence of
instructions as a special graph and proceeding as above.

2 Previous Work

Automatically analyzing and classifying changes to
source code have been studied extensively in literature
before, and listing all relevant papers seems to be out of
scope for this paper. Most of this research focuses on
treating the source code as a sequence of lines, and ap-
plying a sequence-comparison algorithm [5][6].

The problem of matching functions in two executables
to form pairs has been studied in [9, 10], although fo-
cused on reuse of profiling information which allowed
the assumption of symbols for both executables being
available. Other work has been done with focus on
efficient distribution of binary patches [7] [2]. Both
approaches, while finding differences between two bi-
naries, are incapable of dealing with aggressive link-
time profiling-information-based optimizations and will
generate a lot of superfluous information in case regis-
ter allocation or instruction ordering has changed. A
bytecode-centric approach to find sections of similar
JAVA-code is studied in [1].

Another approach to binary comparison also dealing

1

with graph isomorphisms was discussed in [8]: Start-
ing from the entry points of an executable basic blocks
are matched one-to-one based on instructions present in
them. If no matching is possible, a change must have oc-
curred. Due to the reliance on comparing actual instruc-
tions, a significant number of locations is falsely identi-
fied as changed - the paper mentions that about 3-5 % of
all instructions change between two versions of the same
executable. Furthermore, the discussed algorithm seems
to match weakly in situations where the call-graph has
a low connectivity or significant changes in the order of
instructions are present.

The work presented in this paper is a direct extension
of the methods and code presented in [4].

3 Structural Code Analysis

Comparing different variants of the same executable (or
just two arbitrary executables that share a significant
amount of code) has to deal with the problem of the same
source code being compiled to conceivably very different
representations on the assembly level. A number of com-
mon changes that occur between two variants of the same
executable are:

1. Different Register Allocation

Depending on the compiler’s optimization settings
and the changes in the code, different registers will
be assigned to identical instructions.

2. Instruction Reordering

Depending on the compiler’s modelling of the
pipelining of the CPU, individual instructions will
be reordered.

3. Branch Inversion

In many situations, the compiler will attempt to op-
timize the alignment of basic blocks by inverting the
condition of a branch and exchanging the two basic
blocks to which this branch could lead.

Obviously, significantly more severe changes can oc-
cur. The main observation on which the methods pre-
sented in this paper is built is that the callgraph of an ex-
ecutable stays largely the same1, even if compiled with a
different compiler and for a different architecture.

Instead of focusing on the concrete assembly level in-
structions obtained via disassembly, the focus of the pre-
sented approach are the structural properties of the ex-
ecutable, specifically the basic abstraction of functions
and basic blocks as well as their relation to each other.

1It is known that some modern compilers can change the callgraph
significantly through inlining even complex functions. Studying the
applicability of the presented methods needs to be done once code gen-
erated by these compilers becomes more widely used

3.1 Notation

This paper will use quite a few terms from graph theory,
thus a few notations need explaining:

The notationP(S) means the power set of a given set
S.

Whenever the word ”graph” is used in this paper, it
refers to a possibly cyclic directed graph consisting of a
set ofnodesand a set ofedges. A simple capital letter is
used to denote a graph, and the superscripts to the letter
are used if either the set of nodes or edges is referred to.

Thus graph G consists of the set of nodes
Gn := {Gn

1 , . . . , Gn
m} and the set of edgesGe :=

{Ge
1, . . . , G

e
k|Ge

i ∈ Gn ×Gn}.
For later use, we define the functions

up : Gn → P(Gn)
down : Gn → P(Gn)

which map a given nodeGn
i to the subset ofGn that are

direct ”parents” ofGn
i respective to the subset ofGn that

are direct ”children” ofGn
i .

3.2 An executable as Graph of Graphs

We treat the executable as agraph of graphs. This means
that the executable is viewed as a multi-edged directed
graphA which has all functions retrieved from the dis-
assembly as nodes and the call relations between these
functions as edges.

Every nodeAn
i ∈ An is a graph itself, with it’s nodes

consisting of the individual basic blocks in the disas-
sembly and the edges representing their branch relations.
Such graphs are usually calledcontrol flow graphsor
shortcfg.

Each basic block itself (this means each node in the
graph represented byAn

i) is a graph as well, albeit of
very simple form: A sequence of assembly-level instruc-
tions.

3.3 Retrieving the information

In order to retrieve these graphs from an executable, a
good disassembly of the binary is needed. The industry
standard for disassembly is [3], mainly due to its excel-
lent cross-platform capabilities coupled with a program-
ming interface that allows retrieval of the needed infor-
mation without knowledge of the underlying CPU or its
assembly. This facilitates implementing the described al-
gorithms only once but testing them on executables built
for different architectures.

3.3.1 Indirect calls and disassembly problems

In many cases creating a complete call-graph (which rep-
resents all possible relations between the different func-

2

tions) from a binary is not trivial. Specifically indirect
subfunction calls through tables (very common for ex-
ample in C++ code that uses virtual methods) are hard to
resolve statically.

In the presented approach, such indirect calls whose
targets cannot be resolved statically, are simply ignored
and treated as a regular assembly-level instruction. In
practice, this does not yield many problems. The big
risk is to have non-connected sections of the call-graph in
which not a single fixedpoint was generated which would
lead to that subsection of the graph not being properly
matched. Due to the many different properties that can
be used to generate fixedpoints (see Section 4), this is not
a problem in practice.

4 Structural Matching

The general idea of the presented approach is the fol-
lowing: Given two executables, the graphsA andB are
constructed. Then a number of ”fixedpoints” in the two
graphs are created: Two elements (one each fromAn and
Bn are searched that can be easily determined to repre-
sent the same item in both executables.

These fixedpoints are used for creating more fixed-
points iteratively until the mapping can no longer be im-
proved.

Once we have matched the maximum number of func-
tions, we can match basic blocks in the same manner.
Since we already have an isomorphism that allows us to
retrieve two associated functions, we just have to match
the nodes of twocfg’s by identifying fixedpoints and us-
ing that information for matching more and more nodes.

Once we are down to the basic block level, we can treat
two matching basic blocks as graph (of a very simple
form) again, and construct an isomorphism in much the
same manner.

4.1 Selectors

A Selectoris essentially just a mapping that, given a node
An

i ∈ An of a graph and a set of nodes in another graph
returns either one element from the given set or the empty
set, e.g.

s : An ×P(Bn)→ Bn ∪ ∅

The selector’s job is to select a single node from a set
of given nodes that is most ”similar” toAn

i , or, if more
than one candidates with the same ”similarity” exists, to
select nothing at all.

It is intuitively clear that the probability of a selector
returning an empty set rises with larger input sets.

4.2 Properties

A Property π is defined as a mapping that maps two
graphsA andB to subsets of their node sets:

π(A,B)→ (A′n, B′n) with A′n ⊂ An andB′n ⊂ Bn

The purpose of such a mapping is reducing the size of the
sets used by a selector in order to improve the probability
for the selector to return a non-empty result.

4.3 Graph Isomorphism via fixedpoints
and propagation

4.3.1 Generating fixedpoints

Given a selectors, an approximate graph isomorphism
p : An → Bn can be constructed by constructing an
initial isomorphismp1 and then using this to construct
improved versions until one reaches a result that can not
be further improved.

The initial isomorphismp1 : An → Bn is constructed
by simply definingp1(x)→ s(x,Bn).

This simple construction can be significantly im-
proved if a number of properties are available. Let
Π = {π1, . . . , πj} be a set of properties. An improved
initial isomorphism would be constructed as follows:

for π ∈ Π do
(K, L)← π(A,B);
for x ∈ K do

definep1(x)→ s(x, L)
end

end

4.3.2 Propagation of fixedpoints

Given the initial mappingp1, further improved isomor-
phismspi can now be constructed iteratively in the fol-
lowing manner:

Input : pn−1, s, A, B
Result: pn

S ← {x ∈ An|pn−1(x) 6= ∅};
for x ∈ S Sdo

P← up(x)
K ← up(pn−1(x));
for y ∈ P do

if s(y, K) 6= ∅ then
definepn(y)→ s(y, K)

end
end

end
In plain words the above algorithm retrieves nodes for

which pn−1 has a useful mapping, and then examines
only the sets nodes that are direct ”parents” of a node and
it’s image underpn−1. Since these sets are significantly

3

smaller than the sets examined beforehand, the odds for
s returning a non-empty result are enhanced.

The above algorithm can clearly be run withdownin-
stead ofup, and best results are achieved by alternating
between the two.

4.4 Small Primes Product (SPP)

One of the most common changes between two basic
blocks in two executables is a change in instruction or-
dering. An algorithm to quickly determine if two ba-
sic blocks (or even two functions) have the same instruc-
tions (but possibly in different order) is therefore of high
value – it can be directly used to generate additional ini-
tial fixedpoints.

4.4.1 The problem

To phrase the problem more concisely:
Let A := {α1, . . . , αm} be an alphabet withm dif-

ferent elements. LetSn be the permutation group inn
elements. Given two words of lengthn, say,a, b ∈ An,
one wants to determine if a permutationσ ∈ Sn exists so
thatσ(a) = b. We will denote thek-th letter of a worda
by writing ak.

4.4.2 A first solution

Let Pm := {3, . . . , ρm} be the set of the firstm odd
prime numbers. Furthermore consider the mapping

τ : A → Pm, τ(αi) ρi

which assigns a unique small prime number to each el-
ement in the alphabet. We then calculate the product of
all letters ina, b and verify that

n∏
i=1

τ(ai) =
n∏

i=1

τ(bi)

The above condition is equivalent to the existence of a
σ with σ(a) = b because of the uniqueness of prime
decompositions and the fact that multiplication is com-
mutative.

4.4.3 Adjusting to reality: mod 264 arithmetic

Unfortunately large integer arithmetic is rather expen-
sive, and the above method is thus not directly feasible
for real-world applications. If we limit all arithmetic
above to calculations mod264, we can use the normal
in-register multiplication of our x86-CPU. This removes
the expense of large integer arithmetic at the cost of risk-
ing to claim falsely that aσ with σ(a) = b exists.

Quantifying the exact risk is tricky as it depends on the
probabilities of the occurrence of a particularα. We can

nonetheless calculate an upper boundary for the risk of
a false claim under the assumption that allα ∈ A occur
with identical probability.

For any given wordc the following inequation holds:

n∏
i=1

τ(ci) ≤ pn
m (1)

The proposed algorithm will falsely claim thatσ with
σ(a) = b exists if and only if

n∏
i=1

τ(ai) = k264 + c (2)

n∏
i=1

τ(bi) = j264 + c (3)

with k 6= j, c < 264, a 6= b. We can assume without
loss of generality thatk > j. From the above it be-
comes evident that there is a maximum ofk − 1 values
of

∏n
i=1 τ(b) which satisfy equation (3). From (1) it fol-

lows that

k ≤ pn
m

264

The total numberl of words c(1), . . . , c(l) ∈ An for
which

n∏
i=1

τ(c(1),1) 6= · · · 6=
n∏

i=1

τ(c(l),1)

holds is given byl =
(

n + m− 1
n

)
as we can model

the above product as a simple combination with repeti-
tion.

We can thus claim that the oddsρ of two randomly
chosen wordsa 6= b satisfying

n∏
i=1

τ(ai) ≡
n∏

i=1

τ(bi) mod 264

is smaller or equal to

(
pn

m

264
−1)

(
n + m− 1

n

)−1

= (
pn

m

264
−1)

(m− 1)!n!
(n + m− 1)!

One should keep in mind that this is a very rough up-
per boundary which can be improved significantly. Such
improvement would be beyond the scope of this paper.

The important conclusion to draw is that using the pro-
posed method on an alphabet with100 elements is def-
initely safe for words that are shorter than 14 elements,
and very likely for a significant stretch beyond that.

4

4.4.4 SPP and code similarity

Our implementation uses SPP for identifying sequences
of instructions with matching mnemonics. We use the
disassembler-assigned index for each mnemonic to index
into a table with small primes, and calculate the result as
anunsigned long long. This is done on both the function
and the basic block level.

4.5 Example Selectors and Properties

4.5.1 Generic Properties

Many different properties can be thought of. In our ex-
ample implementation, we have used several different
properties for graphsA,B to good effect, with the best
results coming from combining all of the below.

All mappings are in the form of

π1 : (An, Bn)→ ({An
i , . . . , An

k}, {Bn
j , . . . , Bn

l })

with certain criteria that theAn
i , Bn

i have to fulfill. For
brevity we only list the criteria and a short explanation of
their meanings:

1. k-Indegree Nodes / k-Outdegree Nodes

](up(An
i)) = k and](up(Bn

i)) = k

This means that we select nodes whose indegree is
exactlyk. Replacingup with downyields all nodes
with outdegree of excatlyk. Note that selecting ak
of zero will retrieve all root (or alternatively all leaf)
nodes.

2. Recursive Nodes

An
i ∈ up(An

i) andBn
i ∈ up(Bn

i) = 0

This selects nodes that have a link to themselves,
selecting only functions that recursively call them-
selves.

4.5.2 Properties specific to callgraphs

Most properties are not specified on abstract graphs but
use the underlying assembly code for specifying proper-
ties like the following:

1. Same Name

Clearly the most obvious property: Many nodes in
the callgraph of an application will have names,
either from debug information that is available or
because of import/export information in the exe-
cutable.

2. Same String Reference

Nodes in the callgraph can be selected by common
string references, indicating functions that all con-
tain code referring to the same string.

3. Same SPP

Nodes in the callgraph can be selected by common
SPP.

4.5.3 Properties specific to CFGs

Both theSame String Referenceand theSame SPPprop-
erty can be directly applied to CFGs. In addition to these
two, the following property has shown to be useful:

1. Same subfunction call

Nodes in the CFG may contain calls to subfunc-
tions.

At the point where CFG-isomorphisms are calcu-
lated, a good isomorphismpc for the callgraph is
already available. One can therefore select nodes
that call subfunctions that are the same underpc.

4.5.4 Properties specific to the Instruction-level

When matching instructions on the instruction-level-
graph (which is in essence just a sequence), thesame
string referenceandsame subfunction callproperties are
used.

4.5.5 A selector for the callgraph

We associate a 3-tuple with each node in the callgraph.
This 3-tuple consists of the number of basic blocks in the
function, the number of edges linking them to form the
CFG, and the number of subfunction calls found in the
basic blocks.

The selector for callgraph nodes works simply as fol-
lows: The 3-tuples are interpreted as simple vectors in
euclidian space, and the euclidian distance between the
tuple of each element in the supplied set and the tuple
of the supplied element is calculated. If a unique tuple
with minimal distance is found, the selector returns the
associated node.

More formally:

sc(x, A) :=
{

a if ∃ a∈A∀b∈A,b 6=a|x− a| < |x− b|
∅ else

4.5.6 A selector for the CFGs

In the case ofcfgs we work again with 3-tuples of nat-
ural numbers. The construction of this selector is based
on the observation that for small changes in the function,

5

the changes to thecfg are often localized to a region of
the graph. This implies that for a given basic blocka, the
change will be eitherbelowor abovethat block. This im-
plies that either the number of basic blocks on the short-
est pathtoa or the number of basic blocks on the shortest
pathfroma to the end of the function remains constant.

The second observation was that most functions in-
clude a significant amount of error checking which is
represented in thecfg as paths bypassing most of the
functions and jumping directly to the exit node.

We thus associate a 3-tuple with each node in thecfg.
This 3-tuple consists of the number of blocks on the
shortest path to a function exit, of the number of blocks
on the shortest path from the functions entry point, and
the number of subfunction calls made in that basic block.

The disadvantage with this approach is that an insert-
ing a basic block into thecfg can skew the signature of
all blocks that are dominated by it.

In order to deal with this issue, a special selector is
used: It takes a specialδ-Parameter. The definition is
more or less the same as in the calltree situation then:

sc(x,A, δ) :={
a if ∃ a∈A∀b∈A,b 6=a|x− (a + δ)| < |x− (b + δ)|

∅ else

During the propagation of fixedpoints as described in
4.3.2, theδ parameter is calculated by calculating the dif-
ference between the two signatures in the fixedpoint.

4.5.7 A selector for the Instruction-Level

For building the instruction-level isomorphism, we es-
sentially take the distance to the entry and the distance to
the exit of a basic block as signature and apply the same
algorithm as described above.

5 Applications

The capability of building an isomorphism down to the
instruction level offers many interesting applications.

5.1 Porting comments for analysis of mal-
ware variants

For demonstration purposes, we obtained two samples
of theBagle trojan, specificallyBagle.X andBagle.W.
A thorough analysis of theBagle.W-sample was con-
ducted, with a detailed disassembly in which all func-
tions were properly named and most of the database thor-
oughly commented.

We then produced an untouched disassembly of
Bagle.X: No meaningful function names were present,
and the disassembly was completely uncommented.

After running our implementation of the described al-
gorithms on the two disassemblies, all but 6 functions
in the untouched disassembly had been successfully as-
sociated with their counterpart in the already-analyzed
disassembly. Furthermore, only 3 functions had changed
in any significant manner.

Out of the 1524 comments in the matched functions,
all but 10 were successfully transferred between the dis-
assemblies.

All in all, the task of analyzing theBagle.X variant
was reduced to examining three changed functions and
six (very small) unmatched functions. Almost all func-
tion names and comments that had been created for the
previous database could be re-used. Running our analy-
sis took less than 30 seconds.

5.2 Recovering vulnerability information

5.2.1 H323ASN1.DLL

After the NISCC published information about vulner-
abilities in multiple H.323 parsers, the question arose
where the relevant mistake in Microsofts ISA Server
product was. Microsoft refuses to publish detailed in-
formation about the vulnerability they fix. According to
the NISCC report, the problem was located in ASN.1 de-
coding.

Both the pre- and post-patch versions of
H323ASN1.DLL were analyzed, and a total of 8
changed functions (out of 1655) detected.

The changes could be classified into two cathegories:

1. Introduced sanity checks on untrusted values spec-
ifying the number of words to decode from an
ASN.1 stream

2. Introduced sanity checks prior to calls to
ASN1PERDecZeroTableCharStringNoAlloc()

In the second case, a 32-bit integer
from the ASN.1 stream is passed on to
ASN1PERDecZeroTableCharStringNoAlloc() as
second argument. The patched variant introduces a
range check to make sure this second argument is
smaller than 129.

A closer inspection of
ASN1PERDecZeroTableCharStringNoAlloc()
reveals that the function calculates the size of memory
allocation based on the formerly untrusted value – an
attacker was able to set this value in a manner that the
calculation would exceedMAXUINT and thus be of very
small size. The subsequent copy-operation would then
corrupt the heap, allowing an attacker to gain control in
the next round of heap consolidation. Instead of fixing
the issue at the core (e.g. in the MSASN1.DLL library),

6

a range check was added into the calling application
(H323ASN1.DLL).

The update thus disclosed to an examining party that
every call toASN1PERDecZeroTableCharStringNo-
Alloc() needs to have argument checking donebefore
the call is issued. A short system-wide scan was con-
ducted to see if other applications besides ISA Server use
the relevant function in dangerous way. Two other in-
stances were found: The Windows-internal H.323 Multi-
media Provider Library (which allows arbitrary applica-
tions to easily process H.323 data) and Microsoft’s Video
Conferencing Software Netmeeting. Neither does proper
range checking on the function in question.

The result was that the update to H323ASN1.DLL
fixed one bug but alerted anyone with the capability to
analyze patches to two further remotely exploitable vul-
nerabilities which were not fixed at the time.

Microsoft was contacted and the issues were fixed a
few months later, in MS04-11.

The total analysis took less than 3 hours time, the ac-
tual running time of the algorithms less than 5 minutes.

5.2.2 SSL/PCT Parser

In April, Microsoft issued an update to SCHAN-
NEL.DLL, the library responsible for handling SSL
communication. According to their security bulletin,
they removed a security problem that allowed attackers
to take full control of any computer running an SSL-
based server. No technical details were provided, except
that the problem itself lay in a part of the library respon-
sible for parsing PCT packets2.

More than 20 changed functions were detected in total,
but only one with a name that implied it was involved
with PCT parsing. An examination of the functionPct1-
SrvHandleUniHello() revealed that the old version had
taken a string, NOT’ed every character and appended it
to the original string. The new version was changed in
such a manner that it ensured the combined string would
not exceed 32 characters.

Detecting and understanding the vulnerability (a
vanilla stack-smash with EIP overwrite) took less than
30 minutes. Subsequently, code was constructed to reach
the appropriate location in the binary. Within 5 hours,
EIP could be overwritten with an arbitrary value, and
within 10 hours of the start of the analysis, a program
that reliably exploited the vulnerability was created.

6 Summary

It has been shown that nondisclosure of vulnerability
information is not a promising deterrent to would-be-

2PCT is a legacy-protocol that was obsoleted by TLS and is sup-
ported for legacy browsers

attackers and that security updates can be reverse engi-
neered in relatively little time (given the right tools). It
has furthermore been shown that special care has to be
taken when releasing security updates, as the information
in the patch has to be assumed to be public. An incom-
plete bugfix can do more harm than good by disclosing
the existence of other (unfixed) bugs along with the fix.

The presented work furthermore implies that the com-
mon practice of leaving one or two weeks between the
publication of a security update and installing the patch
is highly dangerous.

Leaving the politics of vulnerability disclosure out, it
has been shown that analysis of binaries based only on
structural properties of the code is a promising field of
research, as it allows analysis of executable code without
the need to abstract to an intermediate language or CPU-
specific analysis engines.

References

[1] Brenda S. Baker and Udi Manber. Deducing simi-
larities in java sources from bytecodes. pages 179–
190, 1998.

[2] Brenda S.Baker, Udi Manber and Robert Muth.
Compressing differences of executable code. In
ACMSIGPLAN Workshop on Compiler Support for
System Software (WCSS), pages 1–10, 1999.

[3] DataRescue. IDA Pro disassembler
http://www.datarescue.com/idabase.

[4] Halvar Flake. Structural comparison of executable
objects. InDIMVA, pages 161–173, 2004.

[5] Daniel S. Hirschberg. Algoritms for the
longest common subsequence problem.J. ACM,
24(4):664–675, 1977.

[6] James W. Hunt and Thomas G. Szymanski. A
fast algorithm for computing longest common suse-
quences.Commun. ACM, 20(5):350–353, 1977.

[7] Pocket Soft Inc. RTPatch – software update tool
http://www.pocketsoft.com/whitepapers/whitepaper.html.

[8] Todd Sabin. Comparing binaries with graph
isomorphisms
http://razor.bindview.com/publish/papers/comparing-
binaries.html.

[9] Scott McFarling Zheng Wang, Ken Pierce. Bmat
- a binary matching tool for stale profile propaga-
tion. The Journal of Instruction-Level Parallelism
(JILP), 2, May 2000.

7

[10] Scott McFarling Zheng Wang, Ken Pierce. Bmat
- a binary matching tool.2nd ACM Workshop on
Feedback-Directed Optimization, November 1999.

8

