
VxClass

Clustering Malware, Generating

Signatures

zynamics GmbH

info@zynamics.com

Overview

• Introduction

• What is VxClass? How does it work?

– The Malware Pipeline

• Generating signatures from
clusters of malware

Malware

• Keeping up with the flood of malware is hard:

– Steady increase in number of new variants
measured by “unique hash” (MD5, SHA1)

– Off-the-shelf tools to produce malware-variants
think Swizzor

– AV-signature databases growing fast
problems: duplicates, junk, false-positives, …

– Time of human malware analysts is scarce
don’t let them do repetitive and error-prone work

Automated methods needed

VxClass

• Full infrastructure for processing new malware

– Automated generic unpacking to remove crypters
based on full-system emulation

– Comparison engine to detect similarities
between executables (based on zynamics BinDiff)

often better than a human analyst

– Clustering algorithms for grouping into “families”
allows to visualize the malware phylogeny

– Generation of byte-based AV-signatures
for each cluster

Malware Pipeline

Malware is processed in the following stages

New
Malware

Memory
Dumps

Unpacking
Engine

Graph
Structure

Disassembly
Engine

Fast
Comparison
Scheduler

Similarity
Scores

Comparison
Engine

Malware
Clusters Clusterer

Byte
Signatures

Signature
Generator

Approximizations
used to schedule
“full comparison”

Unpacking Engine

• Full-system Emulation

– Uses snapshot of fully booted Win XP SP3 (32-bit)

– Malware is injected into the system

– Different execution modes

• Execute a pre-defined number of instructions

• Examine repeated snapshots until “good enough”

– Acquires new processes and new kernel memory
injected memory into other processes is not yet acquired

Full-system emulation solves many problems
legacy APIs, API detections, …

Disassembly Engine

• Processes full executables
or memory dumps

• Scan for and recognize typical
function prologues

• Generates

– Flowgraphs

– Executable Callgraphs

• Compiler and library filtering (FLIRT)

Comparison Engine

The “lifeblood” of VxClass

– Based on algorithms developed for
the industry-standard zynamics BinDiff

– Disregard byte sequences,
focus on structural comparison

– Operates on function flowgraphs and the
callgraph structure

performs comparison based on these structures
instead of concrete byte/instruction sequences

Highly resilient against compiler/platform changes
different compilers and settings, even different CPUs (!)

Comparison Engine

Example: GCC vs. Visual C++
below is SpiderMonkey versus escript.dll (Adobe Reader)

Comparison Engine

Example: Mac OS X vs. iPhone
allows cross-CPU comparison

Scheduling Engine

• Calculating a full similarity matrix is O(n²)
prohibitively expensive for large sample sets

• Need to reduce complexity

Filter samples that are not similar at all

• Fast comparison engine using
128-bit flowgraph “hashes” (MD-Index)

– Calculating MD-Indices is fast

– Fast comparison via search for common hashes

• Result of fast comparison prioritizes samples
yields the complete matrix eventually

Hashing flowgraphs for fast database lookup
MD-Index

128-bit Hash Value

Result: Fast DB lookup for
particular functions

• Based on the similarity matrix generate
clusters in different ways

– Compute connected components
use a similarity threshold for graph edges

– Apply phylogeny algorithms (bioinformatics)
yields a family tree

– Use any other clustering algorithm

Clustering

Clustering

Example tree using phylogeny algorithms

Clustering

What to do with those clusters?
tag, name and otherwise analyze them using the web interface

• Fact: Items in the same cluster/family
usually share a lot of code

– Comparison algorithms work like an
“intersection operator”:

Signature Generator

Common Code

Executable A

Executable B

• To build a signature, find functions “common to all
elements of a cluster”

• Map matched similar functions in each executable:

Signature Generator

• Eliminate functions not present everywhere

Signature Generator

• A k-LCS algorithm makes sure only functions that are
in the same order retained

this works because functions are identified by their address

Signature Generator

• Repeat for the basic blocks in each executable

Results in a “common core” of basic blocks
these occur in all items of the cluster and in the same order

• Compute regular k-LCS to determine common byte
sequences

approximate (exact k-LCS has exponential complexity)

• Fill the “gaps” with wildcards:

Signature Generator

Worm.SigGen-20080603193253-1876:0:*:03ff*0100*4424*8d54

24*8d4fff*525051*0100*83c418*85c07c*8b4424*8d4c24*4100*

51c64424*02e8*5424*83c40c8d4424*52685c*4100*8b4424*8b46

048b4e08*d1e085c9894604*4100*535657a8018bf175*84c074*8a

d0b9*4100...

Converted to ClamAV format

Stats: Classified 5000 random executables from VirusTotal and
named resulting clusters.
Signatures were generated and applied to 15000 new executables.

Signature Generator

Cluster Name # executables sig. size in bytes new detected variants

Win32.KillAV.Variants 183 1785 111

Win32.Bacuy.Variants 599 27942 863

Win32.SkinTrim 173 290318 356

Win32.SwizzorA 15 69286 929

Win32.WinTrim 114 3925 126

FakeAlert 54 460 0

Win32.Chifrax 12 40098 26

• What about false positives?

– Scanning 22239 known-good executables (ClamAV)

– Seemingly false positives were always due to bugs
bugs in FLIRT, bugs in our library filtering

– False positive rates empirically around 0.005%

• What about false negatives, then?

– By construction always either valid signature or none

Signature Generator

• Signatures consist of malware bytes
minus the “variable” bits

 generated signatures carry some
“predictive power”

 All except one of the generated signatures caught
some “new” variant of the same malware

Signature Generator

• One (beefy) machine processes ≈1400
samples/day

– Includes unpacking

– Higher performance if specific unpacking happens
first

• Scalable: VxClass routinely runs on a
4-machine cluster

– Scaling to 20-25 machines should be possible

Performance

• Heavy obfuscation of control flow
breaks classification and leads to empty signatures

• Virtualizing packers

• Unpacking only works on 32-bit Windows

– No Linux/Mac OS X/Mobile unpacking

– 64-bit support is in the works

• Using the generated signatures in a AV product
requires good unpacking capability

signatures are generated post-unpacking

But: Manual intervention possible (upload IDBs)

Limitations

Questions?

christian.blichmann@zynamics.com

http://zynamics.com/

http://blog.zynamics.com/

