
Applications of the Reverse
Engineering Language REIL

Hackers to Hackers Conference 2009, São Paulo

Sebastian Porst

zynamics GmbH

(sebastian.porst@zynamics.com)

Talk Overview

• Necessity of new RE methods

• Solutions we developed

• Applications of our solutions

About zynamics

• Small German company

• Unhappy with the state of Reverse
Engineering

• Needed: New RE tools and methods

–BinDiff, BinNavi, VxClass

About me

• Lead Developer of BinNavi

• Many years of RE experience

• Try to come up with new RE methods

• Talk about it at conferences

What we are doing

• Build Reverse Engineering tools

• Try to automize binary file analysis

• Help people find vulnerabilities

Good old days Now

Software Complexity

Architectural Diversity

Microsoft Security Budget

Why we are doing this

How we are doing this

• Develop new RE methods

–Platform-Independent

–Easy to use

• Integrate them into our tools

REIL

• Reverse Engineering Intermediate
Language

• Platform-Independent

• Designed for Reverse Engineering

Design Principles

• Very small instruction set

• Very regular operand structure

• Very simple operand types

• No side-effects

Example

REIL Usage

Convert native code to
REIL

Run REIL algorithm

Port results back to
original code

Advantages

• Easy to pick up and comprehend

• Reduces analysis complexity

• Write once; use everywhere

MonoREIL

• Monotone framework for REIL

• Simplifies analysis algorithm
development

• Read the book

Advantages

• All algorithms have the same regular
structure

• Simplifies algorithms

–Trade-off: Runtime

Core Concepts

• Instruction Graph

• Lattice

• Monotone Transformations

Instruction Graph

1400: add t0, 15, t1

1401: bisz t1, , t2

1402: jcc t2, , 1405

1403: str 8, , t3 1405: str 16, , t3

1406: add t3, t3, t4

1407: jcc 1, , 1420

1404: jcc t2, , 1406

Lattice

B

T

Transformations

1400: add t0, 15, t1

1401: bisz t1, , t2

1402: jcc t2, , 1405

1403: str 8, , t3 1405: str 16, , t3

1406: add t3, t3, t4

1407: jcc 1, , 1420

1404: jcc t2, , 1406

Applications
Register Tracking: Helps Reverse Engineers follow data flow through code
(Never officially presented)

Index Underflow Detection: Automatically find negative array accesses
(CanSecWest 2009, Vancouver)

Automated Deobfuscation: Make obfuscated code more readable
(SOURCE Barcelona 2009, Barcelona)

ROP Gadget Generator: Automatically generates return-oriented shellcode
(Work in progress; scheduled for Q1/2010)

Register Tracking

• Follows interesting register values

• Keeps track of dependent values

• Transitive closure of the effects of a
register on the program state

Lattice

Ø

eax ebx ecx OF

eax
ebx

eax
ecx

ebx
ecx

ecx
OF

All

General Idea

• Start with the tracked register

• Follow the control flow

• Instruction uses register → Add
modified registers to the tracked set

• Instruction clears register → Remove
cleared register from the set

Example
{t0}
add t0, 4, t1

{t0, t1}
bisz t2, , CF

{t0, t1}
bisz t0, , ZF

{t0, t1, ZF}
add t2, 4, t1

{t0, ZF}

Result

Use

• Fully integrated into BinNavi

• Makes it very simple to follow values

• Helps the reverse engineer to
concentrate on what is important

Range Tracking

• Tracks potential ranges for register
values

• Useful to detect buffer underflows
like MS08-67

• Intervals are used to cut down on
complexity

Lattice

• Complicated to show in a picture

• Keep track of register values and
pointer dereferences as a list of
ranges

• eax [0 .. 4] [0 .. 10]
– Add a value between 0 and 10 to [eax], [eax + 1],

[eax + 2], [eax + 3], or [eax + 4]

General Idea

• Track register values relative to their
first use

• Follow the control flow

• Calculate maximum range of effects
each instruction has on a register

• If the range gets negative for
memory accesses, mark the location

Use

• Helps bug hunters to find potential
vulnerabilities

• Automated and effective

• Not yet fully proven to work

Deobfuscation

• Convert obfuscated code into
something more readable

• Multi-process step with many lattices

–Constant propagation

–Dead code elimination

–...

General Idea

• Take a piece of code

• Apply the deobfuscation algorithms

• Repeat until no further
deobfuscation is possible

• Result: Deobfuscated Code

Result

Before After

Problems

• Turns out that deobfuscation is tricky
for many reasons

• Further requirements:

–Function that determines the
readability of code

–Backend that produces executable
code from REIL

ROP Gadget Generator

• Return-oriented shellcode generator

• REIL-based but not MonoREIL-based

• Originally for Windows Mobile but
platform-independent

• To be presented in 2010

General Idea

• Automated analysis of instruction
sequences

• Automated extraction of useful
instruction sequences

• Combines gadgets to shellcode

• Helps the development of return-
oriented shellcode

Result

Future Development

• BinAudit

–Collection of algorithms for
vulnerability research

• Type Reconstruction

–Figuring out what higher level data
types are stored in registers

Related Work

• ERESI Project

• BitBlaze

• Silvio Cesare

http://www.flickr.com/photos/marcobellucci/3534516458/

