
Automated static deobfuscation in 
the context of Reverse Engineering

Sebastian Porst (sebastian.porst@zynamics.com)
Christian Ketterer (cketti@gmail.com)

mailto:sebastian.porst@zynamics.com
mailto:cketti@gmail.com


Sebastian Christian

• zynamics GmbH

• Lead Developer
– BinNavi

– REIL/MonoREIL

• Student

• University of Karlsruhe

• Deobfuscation



Obfuscated Code Readable Code

(mysterious things happen here)

20% 40% 40%

This talk



Motivation

• Combat common obfuscation
techniques

• Can it be done?

• Will it produce useful results?

• Can it be integrated into our 
technology stack?



Examples of Obfuscation

• Jump chains
• Splitting calculations
• Garbage code insertion
• Predictable branches
• Self-modifying code
• Control-flow flattening
• Opaque predicates
• Code parallelization
• Virtual Machines
• ...

Simple

Tricky



Our Deobfuscation Approach

I. Copy ancient algorithms 
from compiler theory books

II. Translate obfuscated 
assembly code to REIL

III. Run algorithms on REIL code

IV. Profit (?)



2009200820072006200520042003200220012000199X

U of Wisc +
TU Munich

U of Ghent

Mathur

F. Perriot

Mathur

M. Mohammed

U of Auckland

zynamics

(see end of this presentation for proper source references)

We‘re late in the game ...

Christodorescu

Bruschi



2009200820072006200520042003200220012000199X

Malware Research

Defensive Reverse Engineering

Offensive Reverse Engineering

... but



REIL

• Reverse Engineering Intermediate Language

• Specifically designed for Reverse Engineering

• Design Goal: As simple as possible, but not 
simpler

• In use since 2007



Uses of REIL
Register Tracking: Helps Reverse Engineers follow data flow through code
(Never officially presented)

Index Underflow Detection: Automatically find negative array accesses
(CanSecWest 2009, Vancouver)

Automated Deobfuscation: Make obfuscated code more readable
(SOURCE Barcelona 2009, Barcelona)

ROP Gadget Generator: Automatically generates return-oriented shellcode
(Work in progress; scheduled for Q1/2010)



The REIL Instruction Set

ADD

SUB

MUL

DIV

MOD

BSH

Arithmetical

AND

OR

XOR

Bitwise

STR

LDM

STM

Data Transfer

BISZ

JCC

Logical

NOP

UNDEF

UNKN

Other





Why REIL?

• Simplifies input code

• Makes effects obvious

• Makes algorithms platform-independent



http://www.flickr.com/photos/wedrrc/3586908193/

MonoREIL
• Monotone Framework for REIL

• Based on Abstract Interpretation

• Used to write static code analysis algorithms



Why MonoREIL?

• In General: Makes complicated algorithms 
simple (trade brain effort for runtime)

• Deobfuscator: Wrong choice really, but we 
wanted more real-life test cases for MonoREIL



Building the Deobfuscator

• Java

• BinNavi Plugin

• REIL + MonoREIL

http://www.flickr.com/photos/mattimattila/3602654187/



Block Merging

• Long chains of basic blocks ending with 
unconditional jumps

• Confusing to follow in text-based 
disassemblers

• Advantage of higher abstraction level in 
BinNavi

– Block merging is purely cosmetic



Before After

Block Merging



Constant Propagation and Folding

• Two different concepts

• One algorithm in our implementation

• Partial evaluation of the input code



Before After

Constant Propagation and Folding



Dead Branch Elimination

• Removes branches that are never executed

– Turns conditional jumps into unconditional jumps

– Removes code from unreachable branch

• Requires constant propagation/folding



Before After

Dead Branch Elimination



Dead Code Elimination

• Removes code that computes unused values

• Gets rid of inserted garbage code

• Cleans up after constant propagation/folding



Before After

Dead Code Elimination



Dead Store Elimination

• Comparable to dead code elimination

• Removes useless memory write accesses

• Limited to stack access in our implementation

• Only platform-specific part of our optimizer



Dead Store Elimination

Before After



Suddenly it dawned us:
Deobfuscation for RE brings new problems
which do not exist in other areas



Let‘s get some help



Problem: Side effects

push 10

pop eax
mov eax, 10

Removed code was used
• in a CRC32 integrity check
• as key of a decryption routine
• as part of an anti-debug check
• ...



Problem: Code Blowup

mov eax, 10

add eax, 10

mov eax, 20

clc

...

Good luck setting
• AF
• CF
• OF
• PF
• ZF



Problem: Moving addresses

0000: jmp ecx

0002: push 10

0003: pop eax

0000: jmp ecx

0002: mov eax, 10

we just missed the
pop instruction

ecx is 0003 but
static analysis
can not know this



Problem: Inability to debug

Executable Input File

mov eax, 10

Deobfuscated list of
Instructions but no
executable file



The only way to solve all* problems:

* except for the side-effects issue

A full-blown native 
code compiler with an 
integrated optimizer

Too much work, maybe we can approximate ...



Before After

Only generate optimized REIL code



• Produces excellent input for 
other analysis algorithms
• Code blow-up solved
• Keeps address/instruction 
mapping
• Code can not be debugged 
natively but interpreted

• Side effects problem remains
• Pretty much unreadable for 
human reverse engineers

Only generate optimized REIL code



Before After

Effect comments



• Results can easily be used by 
human reverse engineers
• Code blow-up solved

• Side effects problem remains
• Address mapping problem
• Code can not be debugged
• Comments have semantic 
meaning

Effect comments



Before After

Extract formulas from code



• Results can easily be used by 
human reverse engineers
• No code generation necessary, 
only extraction of semantic 
information
• Solves all problems because 
original program remains 
unchanged

• Not really deobfuscation (but 
produces similar result?)

Extract formulas from code



Before After

Implement a small pseudo-compiler



• This is what we did 
• Closest thing to the real deal
• Code blow-up is solved

• Partially
• Natively debug the output

• not in our case
• pseudo x86 instructions

• Side effects problem remains
• Address mapping problem 
remains
• Why not go for a complete 
compiler?

Implement a small pseudo-compiler



Economic value in creating a complete 
optimizing compiler for RE?

Not for us

• Small company
• Limited market

• Wrong approach?



Alternative Approaches

• Deobfuscator built into disassembler

• REIL-based formula extraction

• Hex-Rays Decompiler

• Code optimization and generation based on 
LLVM

• Emulation / Dynamic deobfuscation



Conclusion

• The concept of static deobfuscation is sound

– Except for things like side-effects, SMC, ...

• A lot of work

• Expression reconstruction might be much 
easier and still produce comparable results



Related work

• A taxonomy of obfuscating transformations

• Defeating polymorphism through code 
optimization

• Code Normalization for Self-Mutating Malware

• Software transformations to improve malware 
detection

• Zeroing in on Metamorphic Computer Viruses

• ...



http://www.flickr.com/photos/marcobellucci/3534516458/


