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Obfuscated Code Readable Code

(mysterious things happen here)

20% 40% 40%

This talk



Motivation

• Combat common obfuscation
techniques

• Can it be done?

• Will it produce useful results?

• Can it be integrated into our 
technology stack?



Examples of Obfuscation

• Jump chains
• Splitting calculations
• Garbage code insertion
• Predictable branches
• Self-modifying code
• Control-flow flattening
• Opaque predicates
• Code parallelization
• Virtual Machines
• ...

Simple

Tricky



Our Deobfuscation Approach

I. Copy ancient algorithms 
from compiler theory books

II. Translate obfuscated 
assembly code to REIL

III. Run algorithms on REIL code

IV. Profit (?)
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Malware Research

Defensive Reverse Engineering

Offensive Reverse Engineering

... but



REIL

• Reverse Engineering Intermediate Language

• Specifically designed for Reverse Engineering

• Design Goal: As simple as possible, but not 
simpler

• In use since 2007



Uses of REIL
Register Tracking: Helps Reverse Engineers follow data flow through code
(Never officially presented)

Index Underflow Detection: Automatically find negative array accesses
(CanSecWest 2009, Vancouver)

Automated Deobfuscation: Make obfuscated code more readable
(SOURCE Barcelona 2009, Barcelona)

ROP Gadget Generator: Automatically generates return-oriented shellcode
(Work in progress; scheduled for Q1/2010)



The REIL Instruction Set

ADD

SUB

MUL

DIV

MOD

BSH

Arithmetical

AND

OR

XOR

Bitwise

STR

LDM

STM

Data Transfer

BISZ

JCC

Logical

NOP

UNDEF

UNKN

Other





Why REIL?

• Simplifies input code

• Makes effects obvious

• Makes algorithms platform-independent



http://www.flickr.com/photos/wedrrc/3586908193/

MonoREIL
• Monotone Framework for REIL

• Based on Abstract Interpretation

• Used to write static code analysis algorithms



Why MonoREIL?

• In General: Makes complicated algorithms 
simple (trade brain effort for runtime)

• Deobfuscator: Wrong choice really, but we 
wanted more real-life test cases for MonoREIL



Building the Deobfuscator

• Java

• BinNavi Plugin

• REIL + MonoREIL

http://www.flickr.com/photos/mattimattila/3602654187/



Block Merging

• Long chains of basic blocks ending with 
unconditional jumps

• Confusing to follow in text-based 
disassemblers

• Advantage of higher abstraction level in 
BinNavi

– Block merging is purely cosmetic



Before After

Block Merging



Constant Propagation and Folding

• Two different concepts

• One algorithm in our implementation

• Partial evaluation of the input code



Before After

Constant Propagation and Folding



Dead Branch Elimination

• Removes branches that are never executed

– Turns conditional jumps into unconditional jumps

– Removes code from unreachable branch

• Requires constant propagation/folding



Before After

Dead Branch Elimination



Dead Code Elimination

• Removes code that computes unused values

• Gets rid of inserted garbage code

• Cleans up after constant propagation/folding



Before After

Dead Code Elimination



Dead Store Elimination

• Comparable to dead code elimination

• Removes useless memory write accesses

• Limited to stack access in our implementation

• Only platform-specific part of our optimizer



Dead Store Elimination

Before After



Suddenly it dawned us:
Deobfuscation for RE brings new problems
which do not exist in other areas



Let‘s get some help



Problem: Side effects

push 10

pop eax
mov eax, 10

Removed code was used
• in a CRC32 integrity check
• as key of a decryption routine
• as part of an anti-debug check
• ...



Problem: Code Blowup

mov eax, 10

add eax, 10

mov eax, 20

clc

...

Good luck setting
• AF
• CF
• OF
• PF
• ZF



Problem: Moving addresses

0000: jmp ecx

0002: push 10

0003: pop eax

0000: jmp ecx

0002: mov eax, 10

we just missed the
pop instruction

ecx is 0003 but
static analysis
can not know this



Problem: Inability to debug

Executable Input File

mov eax, 10

Deobfuscated list of
Instructions but no
executable file



The only way to solve all* problems:

* except for the side-effects issue

A full-blown native 
code compiler with an 
integrated optimizer

Too much work, maybe we can approximate ...



Before After

Only generate optimized REIL code



• Produces excellent input for 
other analysis algorithms
• Code blow-up solved
• Keeps address/instruction 
mapping
• Code can not be debugged 
natively but interpreted

• Side effects problem remains
• Pretty much unreadable for 
human reverse engineers

Only generate optimized REIL code



Before After

Effect comments



• Results can easily be used by 
human reverse engineers
• Code blow-up solved

• Side effects problem remains
• Address mapping problem
• Code can not be debugged
• Comments have semantic 
meaning

Effect comments



Before After

Extract formulas from code



• Results can easily be used by 
human reverse engineers
• No code generation necessary, 
only extraction of semantic 
information
• Solves all problems because 
original program remains 
unchanged

• Not really deobfuscation (but 
produces similar result?)

Extract formulas from code



Before After

Implement a small pseudo-compiler



• This is what we did 
• Closest thing to the real deal
• Code blow-up is solved

• Partially
• Natively debug the output

• not in our case
• pseudo x86 instructions

• Side effects problem remains
• Address mapping problem 
remains
• Why not go for a complete 
compiler?

Implement a small pseudo-compiler



Economic value in creating a complete 
optimizing compiler for RE?

Not for us

• Small company
• Limited market

• Wrong approach?



Alternative Approaches

• Deobfuscator built into disassembler

• REIL-based formula extraction

• Hex-Rays Decompiler

• Code optimization and generation based on 
LLVM

• Emulation / Dynamic deobfuscation



Conclusion

• The concept of static deobfuscation is sound

– Except for things like side-effects, SMC, ...

• A lot of work

• Expression reconstruction might be much 
easier and still produce comparable results



Related work

• A taxonomy of obfuscating transformations

• Defeating polymorphism through code 
optimization

• Code Normalization for Self-Mutating Malware

• Software transformations to improve malware 
detection

• Zeroing in on Metamorphic Computer Viruses

• ...



http://www.flickr.com/photos/marcobellucci/3534516458/


